国学協働による 信服窓人欲の育成

理工系人材育成に関する産学官円卓会議

西尾章治郎

平成27年12月18日

情報技術が核となったイノベーション

例

🔲 U B E R

革新的なタクシー 配車システム

新たなニーズにマッチした 民泊システム

過疎の山村での 「葉っぱ」ビジネス

フェイスブックによる試算(2014年)

フェイスブックの経済効果: 2270億ドルフェイスブックによる新たな雇用数: 450万人

http://jp.reuters.com/article/2015/01/21/facebook-idJPKBN0KU10L20150121

宇宙機の信頼性の向上等の実現

宇宙航空研究開発機構(JAXA)では、 情報・計算工学技術の研究・開発・利用により、 プロジェクトの高信頼化・高効率化及び宇宙航 空分野の技術革新につなげるための研究ユニッ トを平成17年に設置

自動車の自動走行ビジネス

米国を中心とするIT業界のビッグプレイヤー(Apple、Google)の取組や、ドイツを中心とする自動車業界の米国IT業界と連携した取組が活発化

情報技術への社会からの期待

超スマート社会の実現

【第5期科学技術基本計画】

- サイバー空間と実空間(フィジカル)を融合させた取組 により豊かな暮らしがもたらされる超スマート社会を向 かう未来社会の姿として共有し、世界に先駆けて実現
- ●超スマート社会では、サービスを強化するための様々な 事業のシステム化、複数システムの連携協調を通じて、 新しい価値・サービスが次々と生まれる

超スマート社会 競争力の維持・強化 【第5期科学技術基本計画】

● IoTサービスプラットフォームを活用し、新しい価値を 生み出す事業の創出や新しい事業モデルを構築できる人 材、データ解析やプログラミング等の基本的知識を持ち つつ、ビッグデータやAI等の基盤技術を新しい課題の 発見・解決に活用できる人材などの強化

高度IT人材の必要数・育成の状況

平成17年 総務省情報通信利用促進課「高度ICT人材の育成の推進に向けて」

➡ 高度IT人材の必要数 = 128万人

現状:86万人

IT人材白書2011-2015(情報処理推進機構)

によるIT人材の増減数

平成21年 i-Japan戦略2015 (IT戦略本部、平成21年7月6日)

高度デジタル人材が

年間1,500 人 必要

● IT人材は毎年数万人ずつ 増えているが, 高度IT人 材数の増加率は悪い

IT人材は量・質的にも不 足しているという回答 (2015年度調査)

	人材推計数	中上級人材数
	(万人)	(万人)
2011	102	70
2012	103	71
2013	106	73
2014	109	79
2015	111	75

enPiTの立場 **enPiT**

- ●目標人数:平成28年度400名(連携大学210名・参加大学190名)
- ■教員のFD活動を通じて実践教育実施可能教員を増加
- ■参加大学数は94大学(平成27年度見込み)で実践教育を展開し、 各校(受講者以外も含めて)20名育成できると仮定すると、毎年約 2000名の育成が可能

[従来] 先導的ITスペシャリスト育成推進プログラム

期間

平成18~21年度

先導的役割を担う **サイヤ** ソフトウェア技術者の育成

平成19~22年度

高度セキュリティ 人材の育成

金額

各拠点上限額 1億円程度(各年)

余額

大学間及び産学の壁を越えて潜在力を結集し、教育内容・体制を 強化することにより、専門的スキルを有するとともに、社会情勢 の変化等に先見性をもって対処できる世界最高水準のIT人材を 育成するための教育拠点の形成を支援する

●拠点大学「()内は連携大学]

ソフトウエア技術者の育成

- 1 筑波大学(電気通信大学、東京理科大学)
- 2 東京大学(東京工業大学、国立情報学研究所)
- 3 名古屋大学(南山大学、愛知県立大学、静岡大学)
- 4 大阪大学(大阪工業大学、京都大学、高知工科大学、神戸大学、奈良 先端科学技術大学院大学、兵庫県立大学、立命館大学、和歌山大学)
- 5 九州大学(九州工業大学、熊本大学、宮崎大学、福岡大学)
- 6 慶應義塾大学(早稲田大学、中央大学、情報セキュリティ大学院大学)

高度セキュリティ人材の育成

- 1 奈良先端科学技術大学 院大学(京都大学、大 阪大学、北陸先端科学技 術大学院大学)
- 2 情報セキュリティ大学 院大学(中央大学、東 京大学)

[現在・今後] 超スマート社会実現のための情報技術者

人材像の例

1 高度ソフトウェアエンジニア

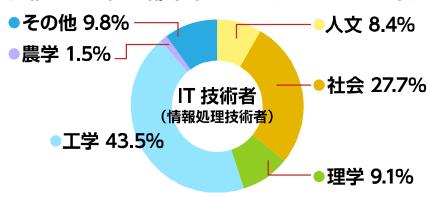
●複雑で大規模なシステムの開発を 牽引できる技術者

1 知的システムエンジニア

● 巨大データの収集・分析に基く 知的システムを構築できる技術者

IT開拓リーダ

● 社会と技術を深く理解し新たな 発想のもと、革新的なシステム と社会の変革を導くことができ る技術者


M Webエンジニア

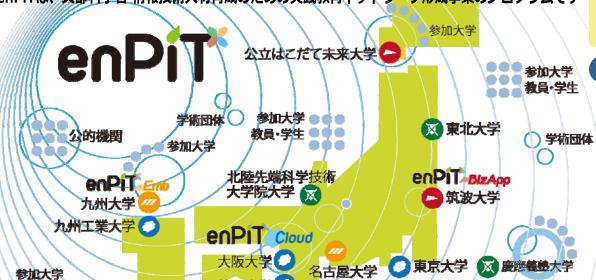
●画面デザインを主とした定型的で 中小規模な開発ができる技術者

我々は 1~3の人材育成を目指す

非情報系専門学部卒業生が多数を占めるIT業界

http://job.gakken-m.co.jp/kotosi2013/yuuri/index.html

1. 高度ソフトウェアエンジニアの育成


情報技術人材育成のための実践教育ネットワーク形成事業enPiT

🔀 情報セキュリティ大学院大学

enPiT Security

Education Network for Practical Information Technologies enPiTは、文部科学省 情報技術人材育成のための実践教育ネットワーク形成事業のプログラムです

大学間連携によるPBL中心 の実践的な情報技術の教育

四つのメリット

- 多種多彩な講義
- 他校の学生との交流
- 業界スペシャリストによる指導
- ▶ PBLによるチーム開発

参加大学

連携企業

enPiT Security enPiT Emb

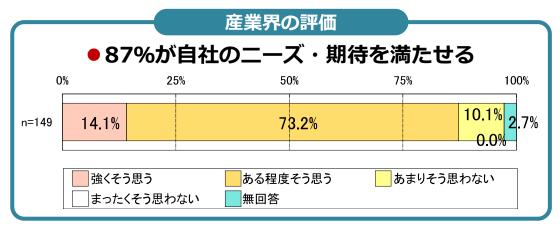
神戸大学

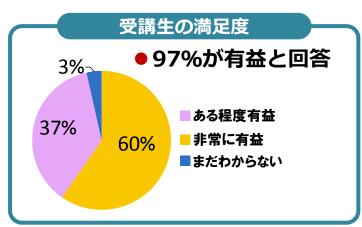
奈良先端科学技術 X

●大阪大学:4分野、15連携大学、79参加大学、110連携企業の代表校

参加大学

●受講者数(308(H25)、542(H26)、554(H27))


情報技術人材育成のための実践教育ネットワーク形成事業enPiT


大規模な産学連携の枠組み:連携企業・組織数 110社 (H27)

2. 知的システムエンジニアの育成

データビリティセンター構想

●様々な学問分野を通じたデータ収集、分析、活用の重要性

●そのための情報基盤と技術が深化

大阪大学にある様々な 関連部門の連携、強化による 異分野融合研究

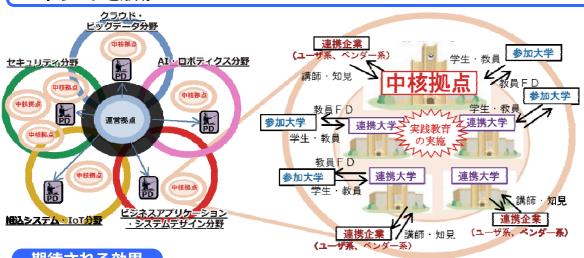
データビリティ基盤

ビッグデータの獲得、処理、解析、認識、マイニング

データビリティセンター

(平成28年4月に設置予定)

ビッグデータアナリストを養成



成長分野を支える情報技術人材の育成拠点の形成(enPiT)

● 平成28年度概算要求額 1,192百万円

- ●情報通信技術の飛躍的な発展(ビックデータやAI、IoT等)を支えるとともに、サイバーセ キュリティーに関する人材の育成は喫緊の課題
 - → 産業界から高い評価を受けているenPiTによる実践教育ネットワーク形成活動を深化・発展さ せ、課題解決型の学習等の実践的な教育を強力に推進し、人材育成機能を強化する。
 - ●大学間・産業界との協力体制を構築し、広く他大学からの学生も受け入れ、課題解決型学習等により、該当分野の人材育成を行 う優れた目標・計画を掲げ、取組を実施する大学を『中核拠点』として選定し支援
 - ◆中核拠点数:7大学程度を想定 ◆支援機関:5年(H28~32) ◆育成対象:学部3or4年·大学院1年、教員(アクティブラーナー)
- ●中核拠点および中核拠点と連携し実践教育を実施する大学(『連携大学』)で、課題解決型学習による人材育成を実施
- ●実践教育活動に協力する企業(『連携企業』、教員や学生を派遣する大学(『参加大学』)による全国規模の一大実践教育ネッ トワークを形成

期待される効果

- ●従来の産業構造やビジネスモデルからの変革に対応する、情報技術を高度に活用し て社会の具体的課題を解決することのできる人材を育成し、我が国の成長に貢献
- ●1大学では実現困難な人的交流とPBLを効率的に実施する全国規模の一大実践 教育ネットワークが形成・強化され、支援終了後は自立的な実施が可能

- 学生が集い、チームによる開発プロセスを 実際に体験
- ●実際の機器を触りながら、PBL演習を実施
- 実務家講師による指導、PBLの成果の講評

実践教育のフレームワーク

4月~7月 8月~9月 10月~12月 分散PBL

基礎知識学習 短期集中合宿

短期集中 合宿(P B L)(2 備えた基 礎学習を 実施

参加する学生が 中核拠点や連携 大学に一同に会 し、集中講義及 び実践形式での PBLを実施

学生が 分散環 境で P BLを 実施

3. IT開拓リーダの育成

●第1期生:24名

●第2期生:20名

●第3期生:23名

ヒューマンウェアイノベーション 博士課程プログラム(HWIP)

ネットワーキング型博士(双方向性)

●情報、生命、認知・脳科学の3領域を対象と して相互のダイナミクスを共通的に捉えることができる人材

従来の博士人材

専門型博士

専門分野A

境界の決まった 専門分野における博士

境界領域型博士(一方向性)

自らの専門性を別の領 域でも活かしながら関 連づけられる博士 専門分野B

認知·脳

専門分野B

生命

専門分野C

専門分野A

情報

産学協働による情報系人材の育成

3. IT開拓リーダの育成

全国の博士課程教育リーディングプログラム: 複合領域(情報)

H24年度

ヒューマンウェアイノベーション 博士課程プログラム

● 大阪大学 (西尾 章治郎・清水 浩) H24年度

デザイン学大学院 連携プログラム

H25年度

エンパワーメント情報学プログラム

● 筑波大学(岩田 洋夫)

H25年度

実世界データ循環学リーダー 人材養成プログラム

● 名古屋大学 (武田 一哉) H24年度

、ソーシャルICT グローバル・クリ エイティブリーダー育成プログラム

GCL

● 東京大学(國吉 康夫)

H25年度

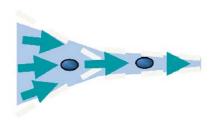
超大規模脳情報を高度に技術するブレイン情報アーキテクトの育成

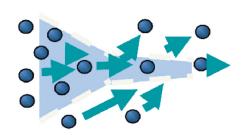
● 豊橋技術科学大学(中内 茂樹)

H25年度

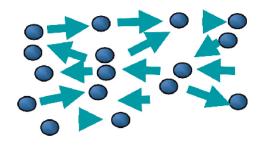
実体情報学 博士プログラム

● 早稲田大学(菅野 重樹)





オープンイノベーションのパラダイムシフト


Open Innovation 2.0: A New Paradigm より

Centralized inward looking innovation

Externally focused, collaborative innovation

Ecosystem centric, cross-organizational innovation

CLOSED INNOVATION

OPEN INNOVATION

INNOVATION NETWORKS ECOSYSTEMS

Figure 1: The Evolution of Innovation

Source: EU Open Innovation Strategy and Policy Group, 2013

Open Innovation 1.0

Open Innovation 2.0

これから求められる情報系(理工系)人材像

イノベーションの核となるべき 人材の輩出

「How to do」ではなく 「What to do」重視

そのための土壌育成に必要なもの

- ●きちんとした情報分野の基礎知識
- 柔軟に技術を発展させ、適用する実践力
- ●他の理系分野、人文社会系分野など幅広い知識と好奇心
- ●国内外を問わず人々と交流し、仕事ができる実行力
- よい意味での自己主張、アイデンティティ

産業界における人材育成への貢献 ―― 組込み適塾

- ●中堅エンジニアを対象に、組織のリーダーとなる教育
- ●2007年より、毎年延べ200人程度、数日~1ヶ月程度の講義と演習
- ●関西経済連合会が中心となって組織した組込みシステム産業振興機構が主催

産業界に望むこと

●理工系専門教育の修了者を

プロとしての扱い

●戦略的な事業展開の中核として

IT開拓リーダ人材の

積極的な活用、

キャリアパス

●博士課程修了者の、より一層の

積極的な採用

