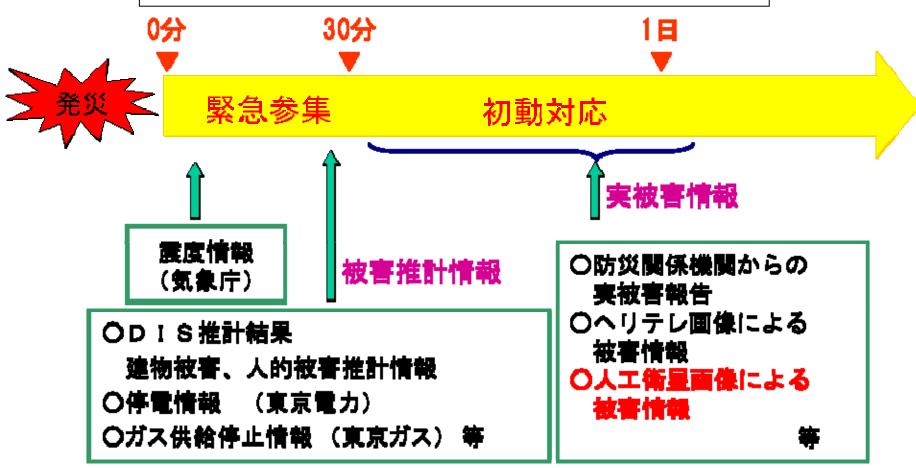
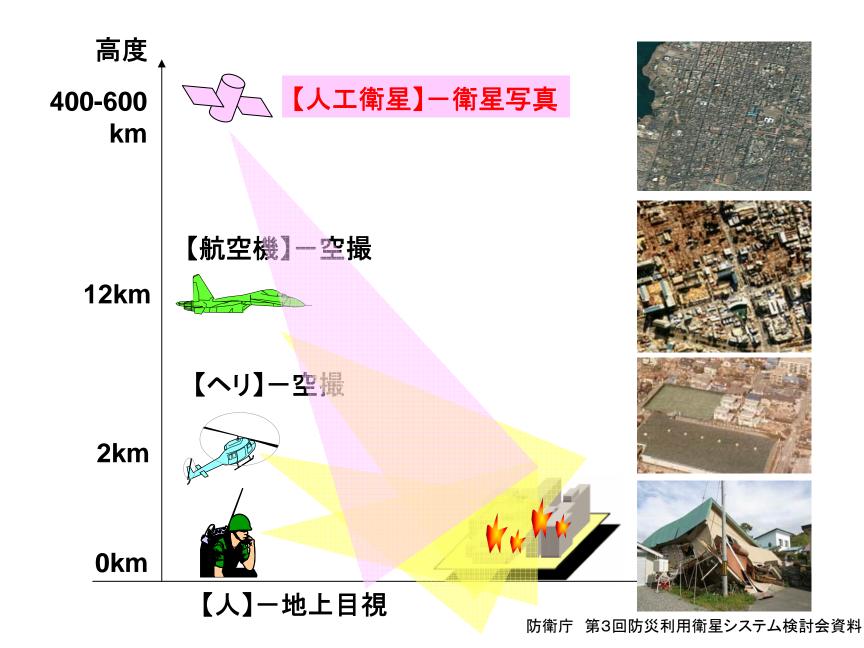
衛星利用要求に係る 防災関連府省庁等からの プレゼンテーション資料 (抄)

地震

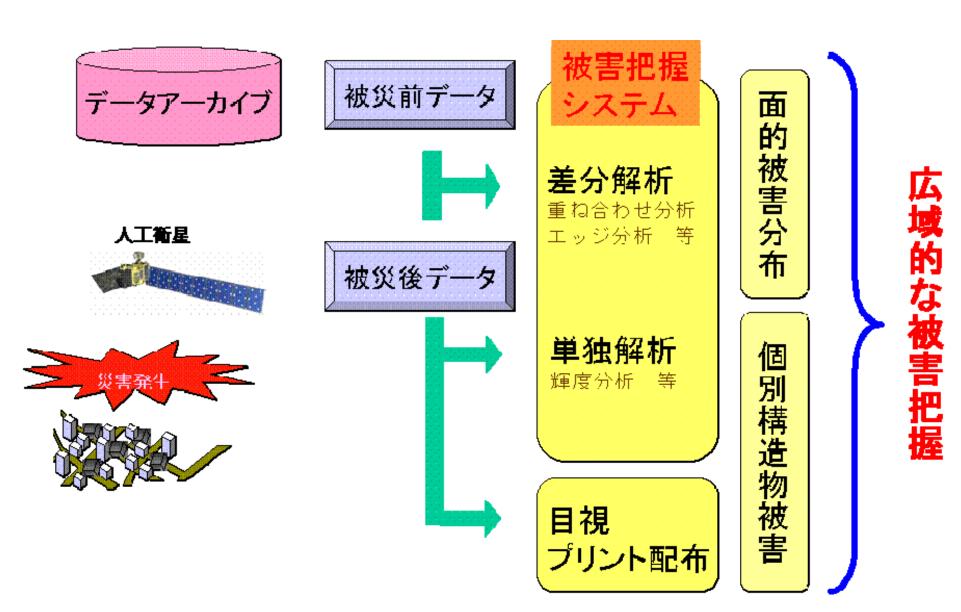

ニーズの細部

区分	細部のニーズ	理由
常時観測	24時間観測	迅速な部隊投入
(観測頻度増加)		→多くの人命の救助
早期の画像入手	迅速に配信を受ける態勢	→状況及びニーズを踏
	(オンライン化)	た支援の実施
SAR画像	夜間、雨霧時における状況把握	→避難住民への早期か
赤外画像	火災・噴火の状況把握	らの支援
高分解能	努めて高精度。	現地部隊の状況把握
	広域→詳細地域の状況把握	→現地での機微な活動
基本処理データで	収差等の修正データの配布	直接、現地での活用
の配布		→現地での機微な活動
被災前画像	全国の各地域のデータを努めて	災害発生時の被害状況抽
パノラマ	多く	出に活用
		3次元地形データに被害 状況を展開し状況把握

防衛庁 第3回防災利用衛星システム検討会資料

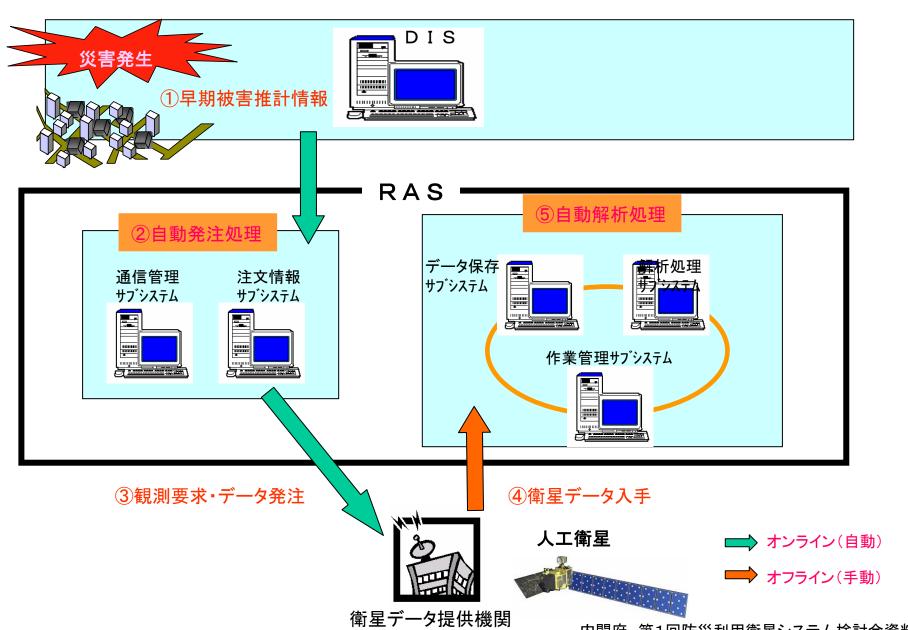

防災における観測衛星の利用

災害規模の把握(地震の場合)



※初動対応のためには数時間~1日程度での入手が必要

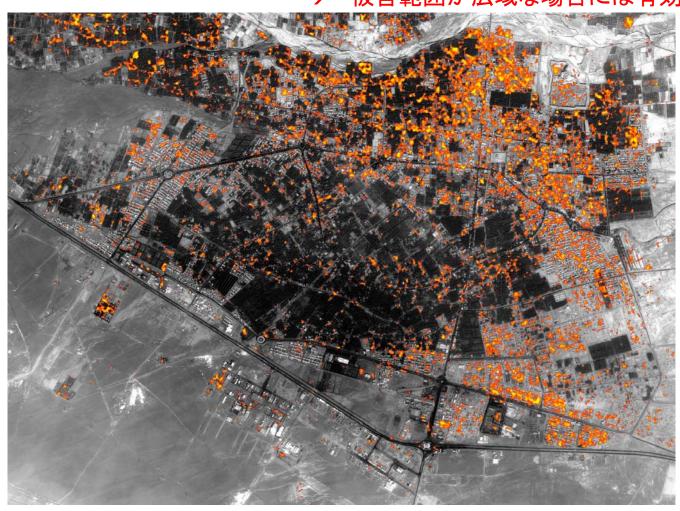
被害状況の把握手段



人工衛星を活用した被害早期把握

内閣府 第1回防災利用衛星システム検討会資料

人工衛星等を活用した被害早期把握システム(RAS)



内閣府 第1回防災利用衛星システム検討会資料

建物倒壊地域の自動抽出

地震翌日のみのIKONOS画像(1m分解能)から画像処理によって甚大被害(瓦礫化)地域を自動推定 (エッジ情報の空間分布を利用)

→ 被害範囲が広域な場合には有効な技術

防災科学技術研究所 第2回防災利用衛星システム検討会資料

2. 業務モデルの構築

①画像・関連データの統合的利用

Step1

中分解能衛星の画像入手・・・・・被災分布の把握

そこで

津波、火山噴火等広域に広がる災害では、中分解能画像で把握可能。 但し、被害量の把握は困難。

(例 津波の遡上エリアは分かっても施設・人的被害量は分からない)

Step2

中分解能衛星画像と地図・社

会経済データとの重ね合わせ

被災施設ボリューム把握

重大被災エリアの特定

Step3

通行可能ルートの特定

Step4

高分解能衛星画像と地図・施

設管理データとの重ね合わせ

被災施設の特定

|通行可能ルートの特定

中分解能・高分解能衛星画像・・・・復旧進捗状況の把握

の継続的な入手

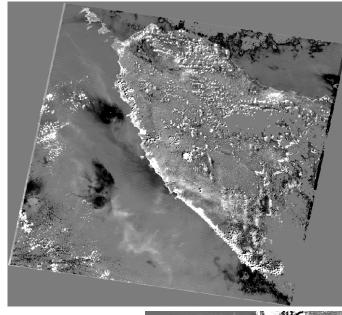
国土交通省 第2回防災利用衛星システム検討会資料

画像・関連データの統合的利用 具体的事例

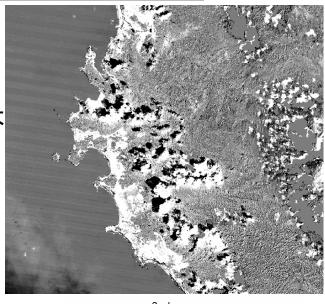
中分解能衛星の画像入手

津波の遡上範囲は分かる がこれだけでは被害の規 模は分からない

中分解能衛星画像と地図・社会経済データとの重ね合わせ


高分解能衛星の画像入手

高分解能衛星画像と地図・施設管理データとの重ね合わせ


中分解能・高分解能衛星画像の継続的な入手

スマトラ沖津波 (2004. 12. 26) Landsat画像 被災前後差分

※白または黒どちれかの色が明経被である所はどれて 後の変化が大きい

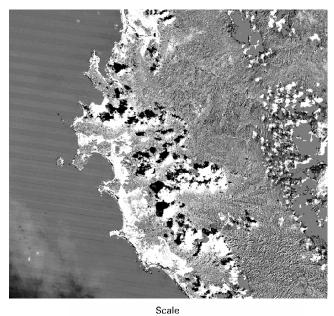
国土交通省 第2回防災利用衛星システム検討会資料

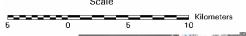
画像・関連データの統合的利用 具体的事例

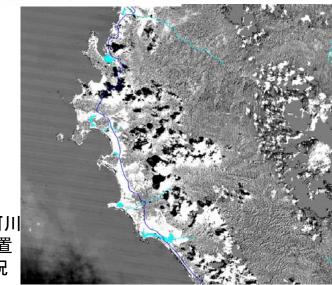
中分解能衛星の画像入手

Step2

中分解能衛星画像と地図・社会経済データとの重ね合わせ


高分解能衛星の画像入手


高分解能衛星画像と地図・施 設管理データとの重ね合わせ



中分解能・高分解能衛星画像の継続的な入手

スマトラ沖津波 (2004. 12. 26) Landsat画像 被災前後差分

道路(図中青線)・河川 (図中水色線)の位置 を重ね合わせた状況

国土交通省 第2回防災利用衛星システム検討会資料

画像・関連データの統合的利用 具体的事例

中分解能衛星の画像入手

中分解能衛星画像と地図・社会経済データとの重ね合わせ

高分解能衛星の画像入手

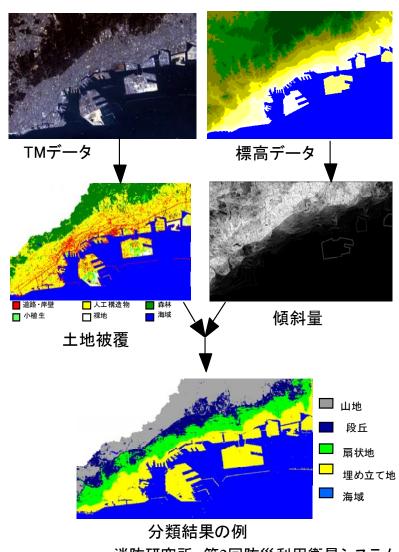
高分解能衛星画像と地図・施設管理データとの重ね合わせ

中分解能・高分解能衛星画像の継続的な入手

【被災前】

【被災後】

国土交通省 第2回防災利用衛星システム検討会資料


衛星データによる地形分類とその地震被害想定への応用

衛星データなどから地形を把握して、その結果を地震被害想定に応用

国土数値情報の地形情報が地震被害想定の地盤データとして利用されているが、1kmメッシュのデータであることから、市町村単位での利用には、もう少し詳細な地盤データが必要である。

全国規模における詳細な地盤データは存在せず、地域的な調査結果は公開されていない.

消防研究所 第2回防災利用衛星システム検討会資料