資料1－2－1

平成 22 年度

海洋環境放射能総合評価事業海洋放射能調査結果

原子カ発電所等周辺海域，核燃料サイクル施設沖合海域

（案）

平成 24 年 2 月

文部科学省 科学技術•学術政策局
原子力安全課 防災環境対策室

環境に存在する自然放射線（能）レベルと，人間の活動により付加される放射線（能）レベルの調査を行うことにより，国民の被ばく線量の推定•評価に資することを目的として，環境放射能調査が文部科学省を中心として関係省庁 で行われているほか，原子力施設周辺においては，事業者及び関係道府県が実施している。

文部科学省は，環境放射能調査のうち原子力施設周辺の放射能調査の一環と して，原子力発電所等周辺の海域における主要な漁場を中心とした放射能調査 を実施して，海洋環境における放射能水準を把握するとともに，原子力発電所等の海洋環境への放射能に関する影響等を総合的に評価し，もつて原子力開発利用に対する国民の理解の増進に資することを目的として，昭和 58 年度から海洋放射能総合評価事業を実施しており，平成2年度には核燃料サイクル施設沖合海域を調査海域に追加している。

平成 22 年度は，海洋環境放射能総合評価事業の一環として，原子力発電所等周辺海域及び核燃料サイクル施設沖合海域の主要な漁場を中心として，次のよ うな調査等を財団法人海洋生物環境研究所に委託して実施した。

1）海洋放射能調査
2 ）総合評価のための解析調査
3 ）評価資料等の作成
4）調査結果の報告•説明
本冊子は平成 22 年度に実施した海洋放射能調査の結果を公表する資料とし てとりまとめたものである。

なお，文部科学省では，科学技術•学術政策局の下に検討会を設け，海洋環境放射能調査結果の評価•検討を行うこととしており，平成 22 年度の海洋放射

能調査結果については，平成 24 年 2 月 13 日に開催した海洋環境放射能調查検討会において評価•検討がなされた。
目 次
はしがき
1 平成 22 年度海洋放射能調査 3
図1 調查海域 3
1－1 試料の採取 4
1－1－1 海産生物試料 4
1－1－2 海底土試料及び海水試料 4
表1（1）発電所海域海産生物試料 5
表1（2）核燃海域海産生物試料 5
1－2 放射性核種の分析 6
1－2－1 分析対象放射性核種 6
1－2－2 海産生物試料，海底土試料及び海水試料の前処理及び分析法 6
1－2－3 検出目標しベル 7
表2 分析対象放射性核種 8
表3（1）発電所海域海産生物試料，海底土試料及び 海水試料の分析方法及び検出目標しベル 9
表3（2）核燃海域海産生物試料，海底土試料及び
海水試料の分析方法及び検出目標とベル 10
1－3 放射性核種分析の結果 11
1－3－1 海産生物試料 11
表 4 発電所海域海産生物試料の放射性核種濃度範囲 11
表5 核燃海域海産生物試料の放射性核種濃度範囲 12
1－3－2 海底土試料 12
表6 発電所海域海底土試料の放射性核種濃度範囲 12
表7 核燃海域海底土試料の放射性核種濃度範囲 13
1－3－3 海水試料 13
表8 発電所海域海水試料の放射性核種濃度範囲 13
表9 核燃海域海水試料の放射性核種濃度範囲 14
1－4 まとめ 15
2 平成 22 年度海底土試料及び海水試料の採取測点
図 2（1）～（14）海底土試料，海水試料採取測点 19

3 平成 22 年度海産生物試料の放射性核種濃度

4 平成 22 年度海底土試料の放射性核種濃度

$$
\text { 表 } 12 \text { (1)~(15) } \quad \text { 平成 } 22 \text { 年度発電所海域海底土試料の放射性核種濃度 } 57
$$

表 13 （1）～（6）平成 22 年度核燃海域海底土試料の放射性核種濃度 72
5 平成 22 年度海水試料の放射性核種濃度
表 14（1）～（15）平成 22 年度発電所海域海水試料の放射性核種濃度 81
表 15 （1）～（22）平成 22 年度核燃海域海水試料の放射性核種濃度 96
6 原子力発電所等周辺海域における放射性核種濃度の経年変化 121
6－1 海産生物試料 121
6－2 海底土試料 121
6－3 海水試料 121
図 3（1）～（13）海産生物試料のゼ饬ム－137 濃度経年変化 122
図4（1）～（14）海底土試料のセ泊ム－137 濃度経年変化 129
図5（1）～（30）海水試料の訃唦ム－137 濃度経年変化 136
7 核燃料サイクル施設沖合海域における放射性核種濃度の経年変化 153
7－1 海産生物試料 153
7－2 海底土試料 153
7－3 海水試料 153

図6（1）～（3）海産生物試料の外听方ム－90， セ淐ム－137，プルトニウム－239＋240 濃度経年変化154
図7（1）～（3）海底土試料のスト听方ム－90，
セン 泊ム－137，プルトニウム－239＋240 濃度経年変化 156
図8（1）～（8）海水試料の师穴ム，ストロンチウム－90，
セン汸ム－137，プルトーウム－239＋240 濃度経年変化 158
付 1 用語の解説 165

平成 22 年度海洋放射能調査

1 平成 22 年度海洋放射能調査

原子力発電所等周辺海域（以下「発電所海域」という）及び核燃料サイクル施設沖合海域（以下「核燃海域」という）の主要な漁場の環境放射能レベルを明らかにするために，図1に示す各調査海域において，海産生物試料の収集並 びに海底土試料及び海水試料の採取を行い，放射性核種を分析した。

なお，発電所海域は，北海道海域，青森海域，宮城海域，福島第1海域，福島第 2 海域，茨城海域，静岡海域，新潟海域，石川海域，福井第 1 海域，福井第 2 海域，島根海域，愛媛海域，佐賀海域及び鹿児島海域の計 15 海域を指す。

- 原子力発電所等周辺海域
- 核燃料サイクル施設沖合海域
- 原子力発電所等

○ 核燃料サイクル施設

図1 調 査 海 域

1－1 試料の採取

各調査海域で，関連漁協から収集する海産生物試料の種類並びに海底土試料及び海水試料を採取する測点の選定に当たつては，学識経験者等による技術的•専門的立場からの指導•助言等を得るとともに，地方自治体，水産関係，原子力関係事業者団体等の意見を聴取し，別途実施されている原子力施設周辺放射線監視事業等（電気事業者等が実施しているものも含む）との重複を避け るよう配慮した。

1－1－1 海産生物試料

海産生物試料は，特に次の事項に留意して選定した。

- 当該漁場における漁獲量が多い種であること
- 当該漁場における生活期間が長い種であること

上記により選定した試料（表1（1）～（2））を，当該漁場に主として出漁して いる漁業協同組合の協力を得て，漁獲した月日と場所を確認して，発電所海域 では 1 種当たり生鮮重量約 20 kg を 1 試料とし，核燃海域では 1 種当たり生鮮重量約 30 kg を 1 試料として，それぞれ年 2 回収集した。

1－1－2 海底土試料及び海水試料

海底土試料及び海水試料の採取測点は，発電所海域については調査海域ごと に 4 測点ずつ，核燃海域については 22 測点を，次の事項に留意して図 $2(1) ~$ （14）に示すとおり定めた。

- 当該施設沖合における主要漁場であること
- 海底ができるだけ砂泥質の場所であること

海底土試料は，平成 22 年 5 月上旬から 6 月中旬にかけて各調査海域の採取測点で年 1 回，海底土の表面から深さ 3 cm までの層を湿重量約 2 kg ずつ採取した。海水試料は，発電所海域では平成 22 年 5 月上旬から 6 月中旬にかけて各採取測点で年 1 回，核燃海域では平成 22 年 5 月下旬から 6 月上旬及び 10 月上旬か ら下旬の年 2 回，海底土を採取したのと同じ採取測点で表層（海面から 1 m 下） と下層（海底から $10 \sim 40 \mathrm{~m}$ 上）の 2 層からそれぞれ，発電所海域では約 100L，核燃海域では約 300L 採取した。

表1（1）発電所海域海産生物試料

調査海域	第1回収集期間 （平成 22 年 4 月 1 日～7月14日）	第2回収集期間 （平成 22 年 10 月 1 日 ~ 12 月 11 日）
北 海 道青 森宮 城福島第1福島第2茨 城静 岡新 潟石 川福井第 1福井第 2島 根愛 媛佐 賀鹿 児 島	ホッケ，ソウハチ，ミズダコ クロソイ，アイナメ，マダラ マダラ，アイナメ，マアナゴ スズキ，メバル，イシガレイ マダラ，マガレイ，ミズダコ ヒラメ，マコガレイ，ミズダコ マゴチ，ニベ，クロウシノシタ スケトウダラ，ホッケ，ミズダコ ニギス，ハタハタ，ホッコクアカエビ ハタハタ，アカガレイ，スルメイカ アカガレイ，スズキ，マアナゴ マダイ，ヒラメ，ムシガレイ カナガシラ類，コウイカ，エビ類 スズキ，カサゴ，メジナ チダイ，カイワリ，アカエイ	ホッケ，ヒラメ，スケトウダラ クロソイ，キツネメバル，スルメイカ マダラ，アイナメ，マアナゴ スズキ，メバル，イシガレイ マダラ，マガレイ，ミズダコ ヒラメ，マガレイ，ミズダコ マゴチ，ニベ，クロウシノシタ スケトウダラ，ホッケ，ミズダコ ニギス，アカガレイ，ホッコクアカエビ ノロゲンゲ，アカガレイ，スルメイカ アカガレイ，マダイ，マアナゴ マダイ，ヒラメ，ムシガレイ オニカナガシラ，コウイカ，シログチ スズキ，カサゴ，メジナ チダイ，カイワリ，アカエイ

表1（2）核燃海域海産生物試料

調査海域	第1回収集期間 （平成 22 年 4 月 19 日～8月 23 日）	第2回収集期間 （平成 22 年 10 月 6 日～11月30日）
核 燃	$\begin{gathered} \text { ミズダコ, ヒラメ, スルメイカ (1)*, } \\ \text { サクラマス, キアンコウ (2) , } \\ \text { マコガレイ, } \\ \text { マダラ }(1) \text {, スケトウダラ, } \\ \text { キアンコウ (1), カタクチイワシ, } \\ \text { ウスメバル, マダラ }(2) \text {, } \\ \text { スルメイカ }(2) \text {, コウナゴ, } \\ \text { アイナメ } \end{gathered}$	$\begin{gathered} \text { ミズダコ, ヒラメ, スルメイカ (1) , } \\ \text { シロザケ (雌) (1) , シロザケ (雄) (1) , } \\ \text { マコガレイ, } \\ \text { マダラ (1), スケトウダラ, } \\ \text { キアンコウ, カタクチイワシ, } \\ \text { シロザケ(雄) (2), マダラ (2) , } \\ \text { スルメイカ (2) , シロザケ (雌) (2) , } \\ \text { サンマ } \end{gathered}$

[^0]
1－2 放射性核種の分析

1－2－1 分析対象放射性核種

分析対象放射性核種は，次の観点に基づいて表2に示すとおり人工放射性核種と自然放射性核種から選定した。

「人工放射性核種」
－原子力施設の排水，放射性降下物等に含まれる放射性物質中に占める比率が高く，かつ，物理的半減期が比較的長い核種であること
－海産生物あるいは海底土に蓄積される性質が強いこと
「自然放射性核種」
－海産生物や海底土から検出される例が比較的多い核種であること

1－2－2 海産生物試料，海底土試料及び海水試料の前処理及び分析法

海産生物試料は，凍結して送付された試料を半解凍して表面の水分をふき取 った後，各個体について全長及び体重を測定し，平均全長及び平均体重を算出 した。筋肉（肉部），内臓等に分割し，分析供試部位である肉部を $105^{\circ} \mathrm{C}$ で乾燥後， $450^{\circ} \mathrm{C}$ で 24 時間灰化した。灰化した試料を 0.35 mm のふるいに通し，混入し た小骨等を取り除き，ふるい下をよく混合して分析試料とした。但し，イカナ ゴの稚仔魚（以下「コウナゴ」という）及びカタクチイワシは，魚体が極めて小さく，全体を食すことから魚体全体を分析に供した。

海底土試料は，凍結して送付された試料を $105^{\circ} \mathrm{C}$ で乾燥後，磁製乳鉢で摩砕 して土塊をくずし， 2 mm のふるいに通して乾燥細土とし，よく混合して分析試料とした。砂質の試料はそのまま，粘土質の試料は微粉砕後，よく混合して分析試料とした。

海水試料は，採取直後に海水 20 L 当たり 40 ml の 6 M 塩酸を添加したものを分析試料とした。但し，核燃海域で調査対象核種としているトリチウム用海水試料は，6M 塩酸を添加せず，採取した海水をそのまま分析試料とした。

発電所海域の海産生物及び海底土の分析試料は，ガンマ線放出核種をガンマ線スペクトロメトリーにより測定した。核燃海域の海産生物及び海底土の分析試料では，ストロンチウム－90，プルトニウム $-239+240^{* 1}$ 及びガンマ線放出核種 をそれぞれベータ線計測，アルファ線スペクトロメトリー及びガンマ線スペク

トロメトリーにより測定した。
発電所海域の海水の分析試料は，化学分離した後，ストロンチウム－90 及び セシウム－137 をベータ線計測により，また一部試料についてはセシウム－134及びセシウム－137をガンマ線スペクトロメトリーにより測定した。核燃海域の海水の分析試料については，電解濃縮した後トリチウムを液体シンチレーショ ン計測により，また，化学分離した後ストロンチウム－90，プルトニウム－239＋240及びガンマ線放出核種をそれぞれベータ線計測，アルファ線スペクトロメトリ ー及びガンマ線スペクトロメトリーにより測定した。

なお，放射性核種の分析は，全て文部科学省放射能測定法シリーズ＊2に基づ いて行った（実施機関：財団法人日本分析センター）。

1－2－3 検出目標レベル

海産生物試料，海底土試料及び海水試料の分析方法ごとの検出目標レベルを表3（1）～（2）に示す。

[^1]表2 分析対象放射性核種

	放射性核種名	記号	半減期＊1	海産生物試料		海底土試料		海水試料	
				$\left\|\begin{array}{cc} \text { 発電所 } \\ \text { 海 } & \text { 域 } \end{array}\right\|$	$\left\lvert\, \begin{array}{\|l\|l\|} & \text { 核 } \end{array}\right. \text { 燃 }$	発電所海 域	$\left\lvert\, \begin{array}{\|l\|l\|} \text { 核 } & \text { 燃 } \\ \text { 海 } & \text { 域 } \end{array}\right.$	発電所海 域	$\left\lvert\, \begin{array}{ll} \text { 核 } & \text { 燃 } \\ \text { 海 } & \text { 域 } \end{array}\right.$
	トリチウム＊2	${ }^{3} \mathrm{H}$	12．33年	－	－	－	－	－	\bigcirc
	マンガン－54	${ }^{54} \mathrm{Mn}$	312.1 日	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc
	コバルト－ 60	${ }^{60} \mathrm{Co}$	5． 271 年	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc
$\begin{aligned} & \text { 人 } \\ & I \end{aligned}$	ストロンチウム－ 90	${ }^{90} \mathrm{Sr}$	28．74年	－	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc
放	ルテニウム－106	${ }^{106} \mathrm{Ru}$	373.6 日	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc
性	セシウム－134	${ }^{134} \mathrm{Cs}$	2． 065 年	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
核	セシウム－137	${ }^{137} \mathrm{Cs}$	30．04年	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	セリウム－144	${ }^{144} \mathrm{Ce}$	284.9 日	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc
	プルトニウム－ $239+240^{* 3}$	${ }^{239+240} \mathrm{P}$		－	\bigcirc	－	\bigcirc	－	\bigcirc
	その他の γ 線放出核種 ${ }^{* 4}$			\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc
自	ベリリウム－ 7	${ }^{7} \mathrm{Be}$	53.29 日	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－
然	カリウム－40	${ }^{40} \mathrm{~K}$	12.77 億	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－
射	タリウム－ $208{ }^{* 5}$	${ }^{208} \mathrm{~T} 1$	3.053 分	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－
性	ビスマス－ $214^{* 6}$	${ }^{214} \mathrm{Bi}$	19.9 分	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－
種	アクチニウム $-228 * 5$	${ }^{228} \mathrm{Ac}$	6． 15 時間	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－

＊1：半減期は「アイソトープ手帳11版」（社）日本アイソトープ協会編集発行（2011年）より引用した。 ＊2：トリチウム $\left({ }^{3} \mathrm{H}\right)$ は，宇宙線によって生じるほか，核実験や原子力発電所等の運転でも生じる。
＊3：プルトニウム -239 の半減期は 2.411 万年，プルトニウム -240 の半減期は 6564 年である。
＊4：半減期約1年以下の核種で，クロム－51（ ${ }^{51} \mathrm{Cr}$ ），コバルト $-58\left({ }^{58} \mathrm{Co}\right)$ ，鉄－59 $\left({ }^{59} \mathrm{Fe}\right)$ ，亜鉛－65 $\left({ }^{65} \mathrm{Zn}\right)$ ，
ジルコニウム－95（ ${ }^{95} \mathrm{Zr}$ ），ニオブ $-95\left({ }^{95} \mathrm{Nb}\right)$ ，ルテニウム $-103\left({ }^{103} \mathrm{Ru}\right)$ ，アンチモン $-125\left({ }^{125} \mathrm{Sb}\right)$ な どがある。

＊5：ウラン－ $238 ~\left(~{ }^{238} \mathrm{U}\right.$ ，半減期： 44.68 億年）を親核種とするウラン系列の子孫核種である。
表3（1）発電所海域海産生物試料，海底土試料及び海水試料の分析方法及び検出目標レベル

試料名	分 析 方 法				検出目標レベル								
	分析核種名	分析供試量	前処理	放射線計測 （計測時間）	ガンマ線放出核種＊1						${ }^{90} \mathrm{Sr}$	${ }^{137} \mathrm{Cs}$	単位
					${ }^{54} \mathrm{Mn}$	${ }^{60} \mathrm{Co}$	${ }^{106} \mathrm{Ru}$	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	${ }^{144} \mathrm{Ce}$			
海産生物試料	ガンマ線放出核種	灰約 80 g	灰 化	$\begin{gathered} \text { ガンマ線 } \\ \text { スペクトロメトリー } \\ (70,000 \text { 秒 }) \\ \hline \end{gathered}$	0.03	0.04	0． 2	0.04	0.02	0.1	－＊2	－	$\mathrm{Bq} / \mathrm{kg}$生鮮物
海底土試料	ガンマ線 放出核種	乾燥土約 100 g	乾 燥	$\begin{gathered} \text { ガンマ線 } \\ \text { スペクトロメトー } \\ (70,000 \text { 秒 }) \\ \hline \end{gathered}$	0.9	0.8	7	1	0.7	4	－	－	$\begin{aligned} & \mathrm{Bq} / \mathrm{kg} \\ & \text { 乾燥土 } \end{aligned}$
海水試料	${ }^{90} \mathrm{Sr}$	50 L	化学分離	$\begin{gathered} \text { ベータ線計測 } \\ (3,600 ~ \\ 7,200 \text { 秒 }) \end{gathered}$	－	－	－	－	－	－	0.4	－	
	${ }^{134} \mathrm{Cs}, ~{ }^{137} \mathrm{Cs}$	50 L	化学分離	$\begin{gathered} \text { ガンマ線 } \\ \text { スペクトロメトリー } \\ (70,000 \text { 秒 }) \end{gathered}$	－	－	－	0.6	0.2	－	－	－	mBq／L
	${ }^{137} \mathrm{Cs}$	50 L	化学分離	ベータ線計測 $\begin{aligned} & (5,400 \sim \\ & 10,800 \text { 秒 }) \end{aligned}$	－	－	－	－	－	－	－	0.5	

＊1：ガンマ線放出核種は，分析対象放射性核種のらち半減期が数十日以下のものを除いた人工放射性核種について記載した。
＊2：分析対象外放射性核種について「一」で示した。
表3（2）核燃海域海産生物試料，海底土試料及び海水試料の分析方法及び検出目標レベル

試料名	分 析 方 法				検出目標レベル									
	分析核種名	分析供試量	前処理	放射線計測 （計測時間）	ガンマ線放出核種＊1						${ }^{90} \mathrm{Sr}$	${ }^{239+240} \mathrm{Pu}$	${ }^{3} \mathrm{H}$	単位
					${ }^{54} \mathrm{Mn}$	${ }^{60} \mathrm{Co}$	${ }^{106} \mathrm{Ru}$	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	${ }^{144} \mathrm{Ce}$				
海産生物試料	${ }^{90} \mathrm{Sr}$	灰約 30 g	灰化後，化学分離	$\begin{aligned} & \text { ベータ線計測 } \\ & (3,600 ~ \\ & \quad 7,200 \text { 秒 }) \end{aligned}$	－＊2	－	－	－	－	－	0.008	－	－	$\begin{aligned} & \mathrm{Bq} / \mathrm{kg} \\ & \text { 生鮮物 } \end{aligned}$
	${ }^{239+240} \mathrm{Pu}$	灰約 20 g	灰化後，化学分離	$\begin{gathered} \text { アルファ線 } \\ \text { スペクトロメリー } \\ (160,000 \text { 秒 }) \end{gathered}$	－	－	－	－	－	－	－	0.0007	－	
	ガンマ線放出核種	灰約 80 g	灰 化	$\begin{gathered} \text { ガンマ線 } \\ \text { スペクトロメトリー } \\ (70,000 \text { 秒 }) \\ \hline \end{gathered}$	0.03	0.04	0.2	0.04	0.02	0.1	－	－	－	
海底土試料	${ }^{90} \mathrm{Sr}$	乾燥土 約 150 g	乾燥後，化学分離	ベータ線計測 $(3,600 \text { 秒) }$	－	－	－	－	－	－	0.2	－	－	$\mathrm{Bq} / \mathrm{kg}$乾燥土
	${ }^{239+240} \mathrm{Pu}$	乾燥土 約 50 g	乾燥後，化学分離	$\begin{gathered} \text { アルファ線 } \\ \text { スペクトロメトー } \\ (80,000 \text { 秒) } \end{gathered}$	－	－	－	－	－	－	－	0.03	－	
	ガンマ線放出核種	乾燥土約 100 g	乾 燥	$\begin{gathered} \text { ガンマ線 } \\ \text { スペクトロメリー } \\ (70,000 \text { 秒 } \end{gathered}$	0.9	0.8	7	1	0.7	4	－	－	－	
海水試料	${ }^{3} \mathrm{H}$	0.6 L	電解濃縮	$\begin{gathered} \text { 液体シンチレーション } \\ \text { 計測 } \\ (30,000 \text { 秒 }) \end{gathered}$	－	－	－	－	－	－	－	－	0.1	Bq／L
	${ }^{90} \mathrm{Sr}$	50 L	化学分離	$\begin{aligned} & \text { ベータ線計測 } \\ & (3,600 ~ \\ & 7,200 \text { 秒 }) \end{aligned}$	－	－	－	－	－	－	0.4	－	－	
	${ }^{239+240} \mathrm{Pu}$	100 L	化学分離	$\begin{gathered} \text { アルファ線 } \\ \text { スペクトロメトー } \\ (160,000 \text { 秒 }) \end{gathered}$	－	－	－	－	－	－	－	0.007	－	mBq／L
	ガンマ線 放出核種	50 L	化学分離	$\begin{gathered} \text { ガンマ線 } \\ \text { スペクトロメトリー } \\ (70,000 \text { 秒 }) \\ \hline \end{gathered}$	0.7	0.7	6	0.8	0.6	3	－	－	－	

＊1：ガンマ線放出核種は，分析対象放射性核種のらち半減期が数十日以下のものを除いた人工放射性核種について記載した。
＊2：分析対象外放射性核種について「一」で示した。

1－3 放射性核種分析の結果

1－3－1 海産生物試料

発電所海域における海産生物試料の魚類，イカ・タコ類及びエビ類（計 90試料）の放射性核種濃度範囲を表4に示す。

検出された人工放射性核種はセシウム－137であり，その濃度は過去5年間の測定値と同程度であった。なお，魚類のセシウム－137で1試料，過去5年間の測定値の範囲を下回る試料があったが，自然変動の範囲内と考えられる。

各海域の海産生物試料の放射性核種濃度を表 10 （1）～（15）に示す。

表4 発電所海域海産生物試料の放射性核種濃度範囲
（単位： $\mathrm{Bq} / \mathrm{kg}$ 生鮮物）

年度	試料名	試料数	セシウム－137
	魚類	75	$0.034 \sim 0.22$
平成 22 年度	イカ・タコ類	12	ND ~ 0.038
エビ類	3	$0.044 \sim 0.069$	
平成 $17 \sim 21$ 年度	イカ・タコ類	674	$0.039 \sim 0.24$
	エビ類	16	ND ~ 0.058

ND は検出下限値以下を示す。

核燃海域における海産生物試料の魚類及びイカ・タコ類（計 30 試料）の放射性核種濃度範囲を表5に示す。

検出された人工放射性核種はセシウム－137 及びプルトニウム $-239+240$ であ り，対象核種のストロンチウム－90及びセシウム－137の濃度は過去5年間の測定値の範囲内であった。

魚類のプルトニウム $-239+240$ で 1 試料（カタクチイワシ），イカ・タコ類の

プルトニウム $-239+240$ で 1 試料（スルメイカ），過去 5 年間の測定値の範囲を超える試料があった。カタクチイワシは骨を含む魚体全体を分析に供すため，過去 5 年間で調査した 10 試料のらち 5 試料で ${ }^{239+240} \mathrm{Pu}$ が検出されている。今回検出された濃度は，過去に検出された濃度（平成 6 年度 $0.0015 \mathrm{~Bq} / \mathrm{kg}$ 生鮮物） も考慮すると自然変動の範囲と考えられる。スルメイカは，過去5年間で調査 した 18 試料のうち 5 試料で ${ }^{239+240} \mathrm{Pu}$ が検出されている。今回検出された濃度は，過去に検出された濃度（平成 4 年度 $0.0014 \mathrm{~Bq} / \mathrm{kg}$ 生鮮物）も考慮すると自然変動の範囲と考えられる。以上を考慮すると，${ }^{239+240} \mathrm{Pu}$ の濃度は過去 5 年間の測定値と同程度と言える。

各海産生物試料の放射性核種濃度を表11（1）～（8）に示す。

表5 核燃海域海産生物試料の放射性核種濃度範囲
（単位： $\mathrm{Bq} / \mathrm{kg}$ 生鮮物）

年度	試料名	試料数	ストロンチウム－90	セシウウ－137		プルトニウム－239＋240
平成 22 年度	魚類	24	ND	ND	~ 0.13	$N D \sim 0.0010$
	イカ・タコ類	6	ND		ND	ND ~ 0.00051
平成 17～	魚類	102	ND ~ 0.010	ND	~ 0.18	ND ~ 0.00062
21 年度	イカ・タコ類	28	ND		~ 0.041	ND ~ 0.00038

NDは検出下限値以下を示す。

1－3－2 海底土試料

発電所海域の 60 測点で採取した海底土試料（計 60 試料）の放射性核種濃度範囲を表 6 に示す。

検出された人工放射性核種はセシウム－137であり，その濃度は過去5年間の測定値の範囲内であった。

各海域の海底土試料の放射性核種濃度を表12（1）～（15）に示す。

表6 発電所海域海底土試料の放射性核種濃度範囲
（単位： $\mathrm{Bq} / \mathrm{kg}$ 乾燥土）

年度	試料数	セシウム－137
平成 22 年度	60	$\mathrm{ND} \sim 7.1$
平成 $17 \sim 21$ 年度	300	$\mathrm{ND} \sim 7.7$

ND は検出下限値以下を示す。

核燃海域 22 測点で採取した海底土試料（計 22 試料）の放射性核種濃度範囲 を表7に示す。

検出された人工放射性核種はストロンチウム－90，セシウム－137 及びプルト ニウム $-239+240$ であり，これらの濃度は過去 5 年間の測定値の範囲内であった。各測点の海底土試料の放射性核種濃度を表13（1）～（6）に示す。

表7 核燃海域海底土試料の放射性核種濃度範囲
（単位： $\mathrm{Bq} / \mathrm{kg}$ 乾燥土）

年度	試料数	ストロンチウム－90	セシウム－137	プルトニウムー $239+240$
平成 22 年度	22	$\mathrm{ND} \sim 0.51$	$\mathrm{ND} \sim 4.1$	$0.41 \sim 4.3$
平成 $17 \sim 21$ 年度	98	$\mathrm{ND} \sim 0.78$	$\mathrm{ND} \sim 5.3$	$0.39 \sim 5.1$

NDは検出下限値以下を示す。

1－3－3 海水試料

発電所海域の 60 測点で採取した表層水と下層水各 60 試料（計 120 試料）の放射性核種濃度範囲を表8に示す。

検出された人工放射性核種はストロンチウム－90及びセシウム－137であり， これらの濃度は過去5年間の測定値と同程度であった。なお，下層水のセシウ ム－137 で 1 試料，過去 5 年間の測定値の範囲を下回る試料があったが，自然変

動の範囲内と考えられる。
各海域の海水試料の放射性核種濃度を表14（1）～（15）に示す。

表8 発電所海域海水試料の放射性核種濃度範囲
（単位：mBq／L）

年度	試料名	試料数	ストロンチウム－90	センウムー137
平成 22 年度	表層水 下層水	60	$0.92 \sim 1.4$	$1.1 \sim 1.9$
平成 $17 \sim$				
21 年度	下表層水	300	$0.36 \sim 1.5$	$0.49 \sim 1.9$
下層水	300	$0.85 \sim 1.9$	$1.1 \sim 2.5$	

核燃海域 22 測点で年 2 回採取した表層水と下層水各 44 試料（計 88 試料）の放射性核種濃度範囲を表9に示す。

検出された人工放射性核種はトリチウム，ストロンチウム－90，セシウム－137及びプルトニウム－239＋240 であり，これらの濃度は過去 5 年間の測定値の範囲内であった。参考として，アクティブ試験開始前の平成 $13 \sim 17$ 年度のトリチウ ム濃度範囲を併記する。

各測点の海水試料の放射性核種濃度を表15（1）～（22）に示す。

表9 核燃海域海水試料の放射性核種濃度範囲
（単位：mBq／L，但しトリチウムは Bq / L ）

参考 アクティブ試験開始前のトリチウム濃度

年度	試料名	試料数	トリチウム
平成 $13 \sim$	表層水	160	ND
17 年度	下層水	160	$\mathrm{ND} \quad \sim 0.24$
~ 0.21			

ND は検出下限値以下を示す。

1－4 まとめ

平成 22 年度に原子力発電所等周辺海域及び核燃料サイクル施設沖合海域の主要な漁場において実施した海洋放射能調査の結果によると，海産生物試料，海底土試料及び海水試料の人工放射性核種濃度は，いずれも過去 5 年間の測定値と同程度であった。

なお，検出された人工放射性核種による環境や人への影響はないと考えられ る。

[^0]: ＊表中の（1），（2）は同一種でも収集した地域が異なることを示す。

[^1]: ＊1 プルトニウム－239（ ${ }^{239} \mathrm{Pu}$ ）とプルトニウム $-240 ~\left({ }^{240} \mathrm{Pu}\right) ~ は$ 放出するアルファ線のエネルギーが ほぼ等しく，通常のアルファ線スペクトロメトリーでは区別して定量できないので，両核種の合計量として定量する方法がとられている。このためプルトニウム $-239+240\left({ }^{239+240} \mathrm{Pu}\right)$ と表す。
 ＊2 文部科学省放射能測定法シリーズ
 2 放射性ストロンチウム分析法 平成15年（4訂）
 3 放射性セシウム分析法 昭和51年（1訂）
 7 ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー 平成 4 年（3訂）
 9 トリチウム分析法 平成14年（2訂）
 12 プルトニウム分析法 平成2年（1訂）
 16 環境試料採取法 昭和 58 年

