施設・構造3-4

京都大学原子炉実験所 研究用原子炉(KUR)の耐震安 全性評価の妥当性確認に係る クロスチェックについて(報告)

平成22年3月30日 文部科学省原子力規制室

(㈱構造計画研究所(解析委託業者)

クロスチェックの作業概要

動的地盤ばねの算出
 2種類の方法により算出し、事業者の結果の妥当性を確認
 原子炉建屋の静的解析
 振動モデル作成のための層の復元力特性の算出
 事業者の静的解析モデルの妥当性を確認

■ 原子炉建屋の振動解析

□ 質点系及び立体モデルにより事業者の結果の妥当性を確認

□ 各部の応力が評価基準値以内であることの確認

■ 機器・配管系の耐震安全性

□ 事業者の方法をトレースして結果の妥当性を確認

地盤ばねの算出方法について

	方法	名称·内容	略称
		薄層要素法+FEM	(事業者)
事		地盤を薄層要素法、基礎を3次元FEM	複雑で精密な
業	1	モデルとし、容積法を用いた動的サブス	モデル化。
者		トラクチャー法で結合したモデルを採用。	
		・埋込み効果を考慮	
		多治見の振動アドミッタンス理論	(JEAG)
		原子力発電所耐震設計技術指針	比較的簡単。
	2	JEAG4601(日本電気協会)に示される	JEAG4601 の
ク		方法。	運用としては
	(17.衣)	・埋込み効果は無視	一般的な手
ス		・地盤の成層補正を行っている	法。
チ		・円形基礎を正方形に面積等価置換	
エ		静的ばねの理論解	(静的理論解)
ッ		「建物と地盤の動的相互作用を考慮した	比較のために
ク	3	応答解析と耐震設計(日本建築学会)」	掲載。
	(比較)	に示される解を採用。	
		・埋込み効果は無視	
		・地盤の成層補正を行っている	

方法2および3の共通事項

- 地震基盤以浅の振動解析の収束物性値を採用 □ 地震基盤はGL-184mとした
 - □ 事業者の基準地震動(Ss-2EW)の収束値を参照
- 成層地盤を等価な均質地盤に置換
 - □ 多治見の成層補正法(半無限弾性体上の円形基礎を仮定し 深さ方向のせん断弾性係数の変化を等価置換する)による
- 基礎の地反力分布は2種類を比較
 - □ 剛板分布、および、一様分布を採用した
- 代表変位の算出方法を方向毎に設定
 - □水平ばね:平均変位、
 - □回転ばね:荷重重み付け平均

□上下ばね:中心

採用地盤の物性値

事業者:基準地震動(Ss-2EW)における収束値

層厚	深度	密度		質量密度	P波速度	S波速度	等価S波速度	等価減衰定数	ポアソン比	等価せん断弾性係数	備考
		r	r	γ/g	Vp	Vs	Vse	h	ν	G	
(m)	(m)	(t/m3)	(kN/m3)	(ts2/m4)	(m/s)	(m/s)	(m/s)	(%)		(t/m2)	
2.0		1.80	17.65	0.1835	380	170	151	2.86	0.3749	4185.1	
5.0		1.69	16.57	0.1723	680	177	130	6.55	0.4637	2912.4	
0.3		1.75	17.16	0.1785	1350	200	121	7.17	0.4888	2612.7	▽基礎下端GL-7.3m
6.7	6.7	1.79	17.55	0.1825	1593	363	285	5.35	0.4726	14825.9	
1.0	7.7	1.63	15.98	0.1662	1600	480	422	3.03	0.4505	29600.0	-
8.0	15.7	1.85	18.14	0.1886	1615	400	336	4.89	0.4673	21297.5	
7.0	22.7	1.83	17.95	0.1866	1140	381	232	9.66	0.4371	10044.0	
5.0	27.7	1.94	19.02	0.1978	1140	402	248	9.43	0.4290	12167.0	
10.0	37.7	1.91	18.73	0.1948	1689	405	259	8.89	0.4695	13065.1	
2.0	39.7	1.97	19.32	0.2009	1605	490	371	8.65	0.4486	27649.9	
3.0	42.7	1.89	18.53	0.1927	1293	450	405	3.08	0.4311	31611.9	
3.0	45.7	1.90	18.63	0.1937	1767	480	330	10.5	0.4602	21098.9	
3.0	48.7	2.00	19.61	0.2039	1553	497	455	2.47	0.4429	42221.3	
7.0	55.7	2.00	19.61	0.2039	1816	550	414	8.74	0.4495	34955.1	
28.0	83.7	2.00	19.61	0.2039	1820	525	468	3.21	0.4546	44668.5	
12.0	95.7	1.97	19.32	0.2009	1862	573	373	11.08	0.4477	27948.8	
2.0	97.7	2.00	19.61	0.2039	1805	545	483	3.33	0.4498	47577.7	
2.0	99.7	2.01	19.71	0.2050	1845	545	302	12.16	0.4522	18693.4	
7.0	106.7	1.99	19.52	0.2029	1816	559	500	3.18	0.4477	50730.9	
22.0	128.7	1.99	19.52	0.2029	1915	540	269	13.27	0.4568	14683.7	
10.0	138.7	2.04	20.01	0.2080	1962	579	334	12.31	0.4523	23206.1	
15.0	153.7	1.95	19.12	0.1988	1903	597	521	3.58	0.4454	53974.6	
14.0	167.7	2.06	20.20	0.2101	2105	739	511	10.24	0.4297	54851.5	
6.0	173.7	2.19	21.48	0.2233	2708	982	992	0.3	0.4243	219759.1	
3.0	176.7	2.41	23.63	0.2458	3517	1597	1613	0.3	0.3701	639388.9	▽地震基盤GL-184.0m
100.0	276.7	2.49	24.42	0.2539	4986	2436	2436	0.3	0.3432	1506722.4	

クロス:成層補正後の等価物性値

	水平	回転	上下
せん断弾性係数G(t/m ²)	16810	15830	18990
せん断弾波速度 Vs (m/s)	303	294	323

地反力分布について

水平地盤ばね定数・減衰係数の比較

回転地盤ばね定数・減衰係数の比較

上下地盤ばね定数・減衰係数の比較

地盤ばね定数の比較一覧

地盤ばね定数(kN/m、kN·m/rad)

	地反力	方法1	方法2	方法3	方法1	方法2
	分布	(事業者)	(JEAG)	(静的理論解)	方法3	方法3
水平	一様分布 平均変位	1.520×10^7	1.319×10^{7}	1.299×10^{7}	1.17	1.02
	剛版分布 剛基礎仮定	1.020 × 10	1.410 × 10 ⁷	1.404×10^{7}	1.08	1.00
回転	三角形分布 平均変位	2.260×10^9	3.160 × 10 ⁹	2.941 × 10 ⁹	1.14	1.07
	剛版分布 剛基礎仮定	3.300 × 10	3.465 × 10 ⁹	3.390 × 10 ⁹	0.99	1.02
上下	一様分布 中心点変位	2.462×10^{7}	1.840×10^{7}	1.814×10^{7}	1.36	1.01
	剛版分布 剛基礎仮定	2.403 ^ 10	2.318×10^{7}	2.310×10^{7}	1.07	1.00

- 方法2と3の地反力分布を剛基礎仮定とした場合に、方法2と3の結果は方法1の結果によく一致する。
- 方法1の結果が若干大きめの値を示す要因は、埋め込みの影響が大きいと考えられる。 10

地盤減衰係数の比較一覧

地盤減衰係数(kN•sec/m、kN•m•sec/rad)

	地反力	方法1	方法2	方法3	方法1	方法2
	分布	(事業者)	(JEAG)	(静的理論解)	方法3	方法3
水平	一様分布	6 0 1 × 10 ⁵	3.898 × 10⁵	4.539 × 10⁵	1.32	0.86
X	平均変位	0.01 × 10	4.495 × 10⁵	4.539 × 10⁵	1.32	0.99
水平	剛版分布	F 00 x 10 5	3.907 × 10 ⁵	4.539 × 10⁵	1.32	0.86
Y	剛基礎仮定	5.98 × 10	4.503 × 10⁵	4.539 × 10⁵	1.32	0.99
回転	一様分布	6.23×10^{7}	3.667×10^7	5.997 × 10 ⁷	1.04	0.61
Х	平均変位		3.090×10^{7}	5.997 × 10 ⁷	1.04	0.52
回転	剛版分布	6.24×10^{7}	3.737 × 10 ⁷	5.997 × 10 ⁷	1.04	0.62
Y	剛基礎仮定		3.149×10^{7}	5.997 × 10 ⁷	1.04	0.53
上下	三角形分布		1.062×10^{6}	9.919 × 10 ⁵	1.07	1.07
	平均変位	1.005 ^ 10	5.361 × 10⁵	9.919 × 10⁵	1.07	0.54

地盤ばね定数・減衰係数の比較の まとめ

■地盤ばね定数

□方法2と3は比較的よく一致した結果となり、方法1
 (事業者)はクロス(剛板分布)に比較して、2~8%
 程度大きめの値となった。

■ 地盤減衰係数

- □水平方向:方法2と3(クロス間)が比較的近い結果 となり、方法1(事業者)はクロスより30%程度大き めの値となった。
- □回転・上下方向:方法3(クロス)と方法1(事業者) が比較的近く、4~7%程度の違いであった。 12

地盤ばね算出における妥当性評価

■地盤ばね定数

□事業者とクロスの差は、最大でも10%未満である ため、耐震安全性の評価における妥当性が確認 できたと考えられる。

■ 地盤減衰係数

- □水平方向においては事業者とクロスチェックの差が30%と比較的大きい。この影響は建屋解析において検証する。
- 回転・上下方法の差は、4~7%であるため、耐震
 安全性の評価における妥当性が確認できたと考えられる。

原子炉建屋の静的解析

原子炉建屋の静的解析について

■目的

□振動モデル作成のための層の復元力特性の算出
 □事業者の静的解析モデルの妥当性を確認

原子炉建屋の概要

解析モデルに対する要求項目

- ■円筒形の動的・立体的挙動
- 円筒壁の面内・面外に対する弾塑性挙動
 - □円筒壁に対する水平面内の拘束が少なく、1階床 版と屋根版のみで拘束される
- ■円筒壁における開口の位置・形状の反映
- ■円筒壁と屋根版の一体性
- 階に質量が集中しておらず、比較的均等に分布している状況

静的解析モデル概要

■ 事業者

- □ 弾塑性モデル(耐震壁要素付ラーメン構造モデル)
 - 面内せん断:壁要素、面外曲げ:ほぼ無視
 - □ せん断耐力式:荒川式
 - 16角形·全4層
- □弾性FEMモデル(全て板要素、固有値解析のみ)

クロスチェック

- □ 弾塑性モデル(格子梁モデル)
 - 面内せん断:シアーパネル、面外曲げ:格子梁モデル
 - 64角形·全20層
 - せん断耐力式: JEAG4601
- □弾性FEMモデル(全て板要素、固有値解析のみ)

格子梁モデル外観

■節点数:1448 □1節点当たり6自由度 ■並進3自由度 ■回転3自由度 ■ 置換梁•柱数:2762 ■シアパネル数:1307 ■ モデル化範囲 □原子炉建屋地下~屋根 □使用済燃料プール(原子炉棟肉

円筒壁版のモデル化基本方針

- 水平に正64角形に分割した(事業者:16角形)。
 鉛直に20分割した(事業者:4分割)
- 如但に20万司した(事未有.4万司) - あ由しあめに四弦に八雄! イエニッズ
- 面内と面外に明確に分離してモデル化した
 面内:シアーパネル(事業者:壁要素)
 - □ 面外:格子梁モデル(事業者:面外考慮は無し)

壁版面内のせん断の復元力特性

壁版の $\tau - \gamma$ 関係

円筒壁の置換梁について

- 壁面内には両端ピン接合、面外には剛接合
- ■ファイバー断面により曲げモーメントと軸力の インタラクションを考慮。
- ■ねじれ剛性は無し、せん断剛性は弾性。

円筒壁の置換柱について

- 壁面内には両端ピン接合、面外には剛接合
 ファイバー断面により曲げモーメントと軸力の
 - インタラクションを考慮。
- ■ねじれ剛性は無し、せん断剛性は弾性。

置換梁・柱の断面について

基礎固定モデル固有モード(1次)

基礎固定モデル固有モード(2次)

固有周期の比較

- クロスにおける全てのモデル と事業者のFEM(非剛床)モ デルは、比較的良く一致した。
- 事業者の串団子振動モデル は、いずれのモデルとも20 ~40%程度の差がある。
- クロスでは、非軸対称要因 (開口・地下壁)の影響は小 さいが、事業者の串団子振 動モデルでは影響は大きい。

固有周期(1次モード)

		X方向	Y方向	
		(sec)	(sec)	
₽	串団子振動 解析モデル	0.139	0.117	
宇 士	FEMモデル	0.0749		
_未 者	(床剛体仮定)	0.086*		
	FEMモデル	0.0830		
	(非剛床)	0.0	97*	
クロス	串団子振動 解析モデル	0.103	0.095	
	立体モデル (格子梁)	0.107	0.102	
	立体モデル (FEM)	0.098	0.092	

- 注1)水平方向に最も全体変形が大きくなるモード を1次モードとした。
- 注2)事業者のFEMモデルは開口の影響を無視し ているため方向性が無い。
 - * 当日配布の別資料(施設・構造3-2) において修正された値