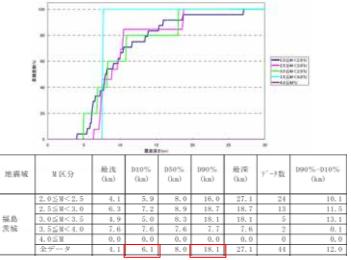

1)震源を特定しに〈い地震の地域性

地震調査委員会(2010)によると、敷地が位置する領域(右図の赤色着色範囲)における「陸域の震源断層を予め特定しに〈い地震」の最大マグニチュードはM6.8とされている。

敷地から100km程度以内の領域で 過去に発生した震源が特定できない 地震は、M6.0~M6.4程度である。

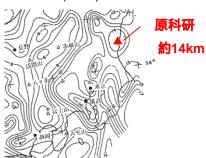
- ·1725年日光の地震(M6.0)
- ·1888年栃木県の地震(M6.0)
- ·1949年今市地震(M6.2、M6.4)

地震調査委員会(2010)による 陸域の震源断層を予め特定しに〈い地震の分類 (一部加筆)


震源を特定せず策定する地震動(2/3)

2) 震源深さ分布の地域性

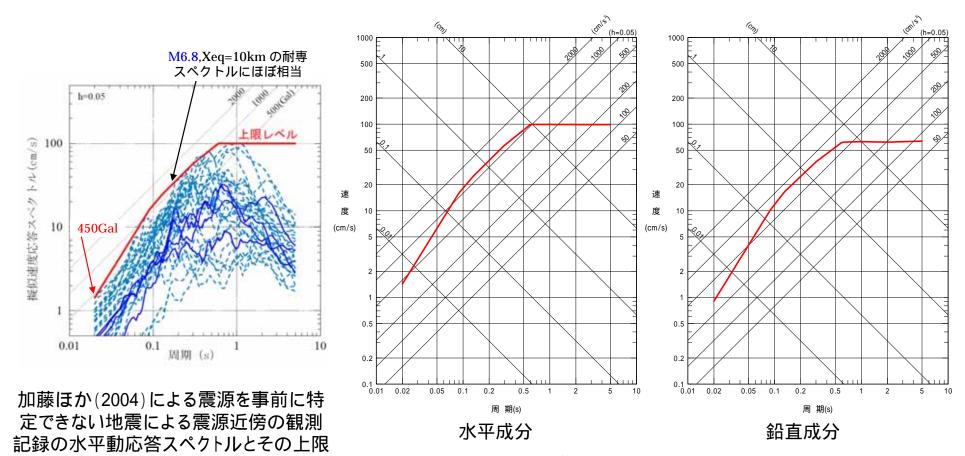
(検討内容)


- ¦・原子力安全基盤機構[JNES](2004)によると、 ¦福島茨城地域の微小地震分布から求めた ¦D10%は約6km、D90%は18km程度である。
- ·コンラッド面の深さ(Zhao et al.(1992))では約 16km
- ・地盤のP波速度が6km/s程度で地震が発生するとの知見を踏まえ、敷地の深部地盤構造モデルに照らし合わせると、深度4.8~17.5km程度である。(地震波速度トモグラフィ解析結果)
- ·地震発生層については、深さ5~18kmに設定する。
- ・地震発生層を深さ5km~18kmとし、それに基づき、断層幅に等しい断層長さを持つ震源断層を仮定し、傾斜角60°で断層面積に相当する地震規模を算定するとM6.7となる。

なお、地震発生層を4.8~17.5kmとしても地 震の規模はM6.6となる。

原子力安全基盤機構(2004)による福島・茨城の地震発生層のパラメータ(地震域:福島・茨城)

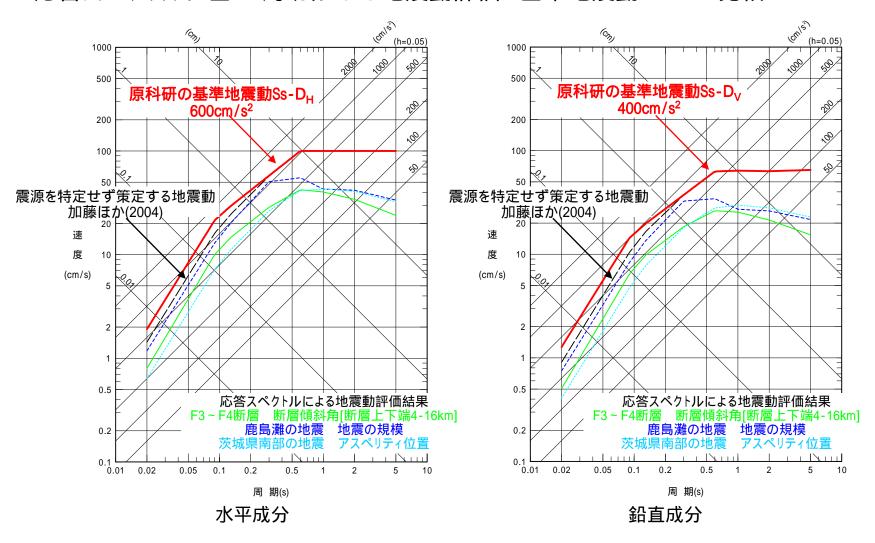
大久保(1984)による キュリー点深度分布(一部加筆)


Zhao *et al.* (1992) による コンラッド面深さ(一部加筆)

敷地の深部地盤構造モデル

	上面深度	解放基盤	層厚	Vp	Vs	密度	On	00	備考	
地表	(km)	以深(km)	(km)	(km/s)	(km/s)	(g/cm ³)	Qp	Qs	MH 15	
解放基盤面	0.000	-	0.360	-	-	-	-	-	PS検層データ	
	0.360	0.000	0.287	2.040	0.710	1.86	100	100	「切り」	
	0.647	0.287	0.327	2.608	1.200	2.11				
	0.974	0.614	0.009	3.103	1.500	2.24			微動アレー探	
	0.983	0.623	0.014	3.949	2.000	2.42			査、H/Vスペク	
地震基盤	0.997	0.637	0.013	4.804	2.500	2.57			トル解析結果	
	1.010	0.650	3.790	5.492	2.900	2.66	110f ^{0.69}	110f ^{0.69}		
	4.800	4.440	12.640	5.960	3.600	2.70			速度トモグラ フィ解析結果	74
	17.440	17.080	14.560	6.810	4.170	2.80				14
	32.000	31.640		7.640	4.320	3.20				

震源を特定せず策定する地震動(3/3)

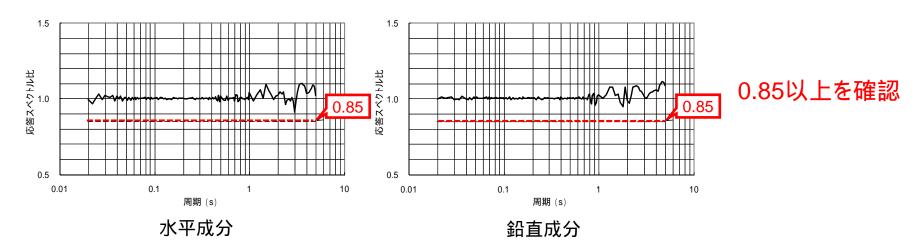

敷地周辺における震源を事前に特定できない地震の最大規模は、加藤ほか(2004)が「震源を事前に特定できない地震による水平動の地震動レベル」を提案する際に基づいた地震規模M6.8と同程度と推定されるため、震源を特定せず策定する地震動のスペクトルは加藤ほか(2004)に基づいて設定する。

震源を特定せず策定する地震動の応答スペクトル

応答スペクトルに基づ〈手法による基準地震動Ss

応答スペクトルに基づ〈手法による地震動評価と基準地震動Ss-Dの比較

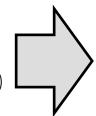
断層モデルを用いた手法による基準地震動Ss


断層モデルを用いた手法による地震動評価と基準地震動Ss-Dの比較

半経験的波形合成法の結果とハイブリッド合成法の結果を比較し、大きい方を選択 [F3~F4断層 ハイブリッド合成法/鹿島灘の地震、茨城県南部の地震 半経験的波形合成法]

基準地震動Ssの時刻歴波形(1/2)

設計用応答スペクトルに対する模擬地震波の応答スペクトル比


SI(応答スペクトルの強さ)比

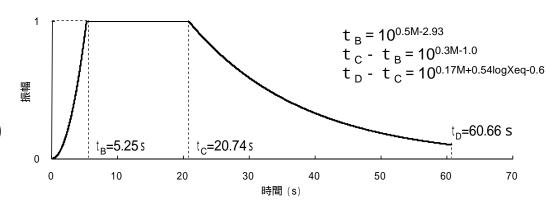
$$SILL = \frac{\int_{0.1}^{2.5} S_V(T) dT}{\int_{0.1}^{2.5} \overline{S}_V(T) dT}$$

 $S_{V}(T)$:模擬地震波の応答スペクトル(cm/s)

 $\overline{S}_{V}(T)$:設計用応答スペクトル(cm/s)

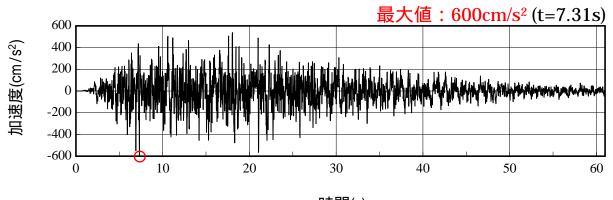
T:固有周期(s)

Ss-D_H:1.02

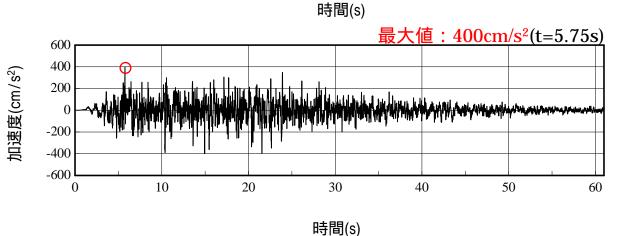

Ss-Dv:1.02

1.0以上を確認

基準地震動Ssの時刻歴波形(2/2)


振幅包絡線の経時変化

- · Noda et al.(2002)に基づき設定
- ・設定諸元: M7.3、Xeq=60km (1896年鹿島灘の地震)



模擬地震波の加速度時刻歴

水平成分 Ss-DH

鉛直成分 Ss-D∨

参考文献

- ・ 気象庁(1951~2008):地震月報ほか、気象庁、昭和26年~平成20年
- ・ 宇佐美龍夫(2003):最新版 日本地震被害総覧[416] 2001、東京大学出版会
- ・宇津徳治(1982):日本付近のM6.0以上の地震および被害地震の表:1885年~1980年、 東京大学地震研究書彙報、Vol.57 及び 宇津徳治(1985):日本付近のM6.0以上の地震および被害地震の表:1885年~1980年 (訂正と追加)、東京大学地震研究所彙報、Vol.60
- ・ 活断層研究会編(1991):新編 日本の活断層 分布図と資料、東京大学出版会
- ・ 地震調査研究推進本部地震調査委員会(2004):「関谷断層の長期評価について」
- ・ 地震調査研究推進本部地震調査委員会(2005):「関東平野北西縁断層帯の長期評価について」
- ・ 村松郁栄(1969): 震度分布と地震のマグニチュードとの関係、岐阜大学教育学部研究報告、 自然科学、第4巻、第3号、pp.168-176
- ・勝又譲、徳永規一(1971):震度 の範囲と地震の規模および震度と加速度の対応、験震時報、 第36巻、第3,4号、pp.1-8
- ・ 地震調査研究推進本部地震調査委員会(2004):「相模トラフ沿いの地震活動の長期評価について」
- ・ 国土地理院(2009):日本全国の地殻変動、地震予知連絡会会報、第82巻、1-3
- · 工業技術院地質調査所(2004):日本重力CD-ROM第2版
- ・ 大久保泰邦(1984):全国のキュリー点解析結果、地質ニュース、362号
- · Zhao,D., S.Horiuchi and A.Hasegawa (1992): Seismic velocity structure of the crust beneath the Japan Islands, Tectonophysics, 212, pp.289-301

参考文献

- ・ 地震調査研究推進本部地震調査委員会(2009):「三陸沖から房総沖にかけての地震活動の長期 評価(一部改訂)」
- · 地震調査研究推進本部地震調査委員会(2010):「全国地震動予測地図」
- ・中央防災会議(2004):「首都直下地震対策専門調査会(第12回)、「地震ワーキンググループ報告 書」、平成16年11月17日
- Noda,S., K.Yashiro, K.Takahashi, M.Takemura, S.Ohno, M.Tohdo and T.Watanabe (2002):
 RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES,
 OECD-NEA Workshop on the Relations between Seismological Data and Seismic Engineering
 Analysis, Oct.17-19, Istanbul
- ・加藤研一、宮腰勝義、武村雅之、井上大榮、上田圭一、壇一男(2004):震源を事前に特定できない内陸地殻内地震による地震動レベル 地質学的調査による地震の分類と強震動観測記録に基づ〈上限レベルの検討 、日本地震工学会論文集、第4巻、第4号
- ・ 佐藤良輔(1989):日本の地震断層パラメター・ハンドブック、鹿島出版会
- · 日本電気協会 原子力規格委員会(2008):原子力発電所耐震設計技術指針、JEAG4601-2008
- ・原子力安全基盤機構(2004):地震記録データベースSANDELのデータ整備と地震発生上下限 層深さの評価に関する報告書(平成15年度)、JNES/SAE04-017
- ・ 日本原子力学会(2007):原子力発電所の地震を起因とした確率論的安全評価実施基準:2007、 AESJ-SC-P006:2007