地震発生層の検討(6/11)

2) 地盤の速度構造に基づく検討

大都市大災害軽減化特別プロジェクト(2007)による深部地盤の速度構造探査

大都市大災害軽減化特別プロジェクト(2007)では、千葉県房総半島を中心とした領域において、 精密震源決定法の一つである二重走時差震源決定法のアルゴリズムを利用した走時インバージョ ンにより、三次元の速度構造モデルを推定している。

下図によると、測線の一番北側(茨城県鹿嶋市付近)におけるP波速度Vpと深度の関係は、 <u>Vp=5.5km/sで約10km、Vp=6.0km/sで約16km、Vp=6.5km/sで約20km</u>と評価されている。

大大特(2007)によるインバージョンのグリッド図及びP波速度構造断面図(一部加筆)

地震発生層の検討(7/11)

2) 地盤の速度構造に基づく検討

敷地周辺の物理探査による地盤の速度構造

敷地の深部地盤構造を把握するために実施した地震波速度トモグラフィ解析の結果、内陸 地殻内地震の発生と相関があると考えられるP波速度6km/s相当の層が、<u>東海地区において</u> は4.8~17.5km程度に評価された。

また、東海地区より南に20km程度離れた位置にある大洗研究開発センターにかけてP波速度6km/s相当層が上昇し、大洗地区においては深さ4~16km程度に評価された。

東海地区及び大洗地区における深部地盤の速度構造 (左図:東海地区から大洗地区にかけての測線、右図:深部地盤の速度構造)

地震発生層の検討(8/11)

3) 地球物理学的な知見に基づく検討

地殻熱構造による検討

地震の発生層と地殻の熱構造には関係があるとされ、Tanaka *et al.*(2005)はD90%深度とキュリー 点深度に相当するZb深度に相関があることを示している。

大久保(1984)による敷地周辺の<u>キュリー点深度は約14km</u>であり、Tanaka *et al.*(2005)によれば Zb深度は20~22km程度であった。Tanaka *et al.*(2005)によるZb深度の結果を、D90%深度とZb深度 との関係に照らし合わせると、<u>D90%深度は17~23km程度</u>となる。

地震発生層の検討(9/11)

3) 地球物理学的な知見に基づく検討

地殻構造による検討

地球内部は大きく分けて核、マントル及び地殻から構成され、マントルと地殻の境界面をモホロビ チッチ不連続面(モホ面)という。さらに、地殻においては花崗岩質層の上部地殻及び玄武岩質層 の下部地殻に大別され、その境界面をコンラッド不連続面(コンラッド面)といい、内陸地殻内の地 震は主にコンラッド面より上層の上部地殻内で発生するといわれている。

Zhao *et al.*(1992)によるコンラッド面とモホ面の深度分布によると、敷地周辺の<u>コンラッド面深度</u> は約16km、モホ面深度は31km程度である。

地震発生層の検討(10/11)

4) 敷地における地震発生層の設定

敷地周辺における地震発生層に関する情報を整理すると以下のとおりである。

		上端深さ	下端深さ	厚さ
		[km]	[km]	[km]
1) 微小地震分布に基づく検討		_	-	_
原子力安全基盤機構(2004)による		61	101	12.0
福島茨城の地震発生上下限層(D10%深度及び	びD90%深度)	0.1	10.1	12.0
2) 地盤の速度構造に基づく検討		-	-	
海洋研究開発機構(JAMSTEC)(三浦ほか(2000))による	約6~0	約15	約6~0
深部地盤の速度構造探査(Vp=5.5~6.5km/s層)	層の深度)	mj0 ~ 9	mj10	mj0 9
大大特(2003)による深部地盤の速度構造探	查	約5	-	-
(Vp=6km/s程度層の深度)				
大大特(2007)による深部地盤の速度構造探	渣	約10~16	<u>終</u> 行20	<u>終日</u> 4~10
(Vp=5.5~6.5km/s層の深度)		#JZ0	MJ4~10	
敷地周辺の物理探査による地盤の速度構造		10	175	10.7
(Vp=約6km/s層の深度)		4.0	17.5	12.7
	大洗地区	40	16.0	12.0
		ט.ד	10.0	12.0

- ・ 地震発生層の上端深さは概ね5km程度と評価される。
- ・ 地震発生層の厚さは最大で13km程度と評価される。
- ・大洗地区(F3~F4断層近傍)については、周辺の物理探査により地震発生層に関連する速度 層の上昇が見られ、その上端深さは約4km、下端深さは16km程度である。

地震発生層の検討(11/11)

敷地におけるF3~F4断層の地震動評価にあたっては、多角的な検討(断層上下端深さ5~18km及び4~16km)を実施することとする。

1) 敷地における地震観測

2002年02月12日 22時44分 地震の規模 M5.7 震源深さ 47.79km 震央距離 60.06km 水戸震度 4

2004年10月23日 17時56分 地震の規模 M6.8 震源深さ 13.08km 震央距離 188.18km 水戸震度 3

2005年10月19日 22時44分 地震の規模 M6.3 震源深さ 48.32km 震央距離 46.50km 水戸震度 4

敷地で観測した主な地震の震央分布

敷地地盤の特性(3/9)

<u>敷地地盤の特性(4/9)</u>

地震観測記録を用いた検討 2)

地震観測記録

検討フロー

ボーリング·PS検層結果 地盤構造モデル(初期地盤モデル)

<u>敷地地盤の特性(6/9)</u>

2) 地震観測記録を用いた検討

浅部地盤構造モデル (地表~解放基盤)

(m) NO. (g/cm ³) Vs(m/s) ho Vp(m/s) ho Perent IDE +35.90 1 1.33 150 847 +33.80 2 1.33 150 +33.80 3 1.92 328 +28.40 4 1.74 310 +26.90 5 1.84 462	<u>1m</u>
1 1.33 150 +35.90 2 1.33 150 +33.80 2 1.33 150 +33.80 3 1.92 328 +28.40 4 1.74 310 +26.90 5 1.84 462	1m
100.00 2 1.33 150 +33.80 3 1.92 328 +28.40 4 1.74 310 +26.90 5 1.84 462	
+33.80 3 1.92 328 +28.40 4 1.74 310 +26.90 5 1.84 462 +20.70 5 1.84 462	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
+26.90 5 1.84 462 880	
+20.70	
6 1.79 509 1195	
+18.80 7 1.78 439 974	
+16.20 <u>8 2.02 620</u> 1422	
+10.50 9 1.86 456 1412 ◆ 建家北側、G.L.	-30m
+5.00 10 1.86 456 0.071 0.715 1412 0.470 0.000 年 建家西側, G.L.	-32m
-2.20 11 1.89 368 0.071 0.715 1706 0.470 0.939	
-3.30 12 1.84 392 1641	
-28.80 13 1.81 398 1544	
-35.10 14 1.92 438 1642	
-47.50 15 2.05 523 1702	
-48.90 16 1.97 481 1716	
-54.00 17 1.79 502 1667	
-58.10 18 1.79 502 1667 年 建家西侧, G.L.	-95m
-100.00 19 1.82 568 1953	
	1
-135.40 21 1.98 1014 2049 1014]
- 130.30 22 1.98 903 2531 ▲ 建家西側、G.L	1/4m
- 147.80 23 2.00 911 0.213 0.557 2195 0.791 1.084	
242 00 24 1.85 1148 2642	1
-213.00 25 1.85 1080 2260 4 建家北側、G.L	250m

1) 減衰定数: h = h₀ × f f は周波数(Hz)

敷地地盤の特性(7/9)

2) 地震観測記録を用いた検討

プレート間地震(鹿島灘のプレート間地震)

敷地地盤の特性(8/9)

2) 地震観測記録を用いた検討

沈み込んだ太平洋プレート内の地震

敷地地盤の特性(9/9)

2) 地震観測記録を用いた検討

沈み込んだフィリピン海プレート内の地震

1)	内陸地殻内地震
•)	

番号	断 層 名	断層長さ (km)	マク ニチュード M**	等価 震源距離 (km)
1	関谷断層	40	7.5	106
2	関東平野北西縁断層帯	82	8.0	120
3	棚倉破砕帯西縁断層 (の一部)*	16	6.8	50
4	F3~F4断層*	16	6.8	10

* 地質学的に最終活動時期を評価するための地層が上載しないことから、 後期更新世以降の活動性が否定できない断層

** マグニチュードの算定は、松田(1975)に基づく。

内陸地殻内地震の地震動の応答スペクトル【水平】 (Noda et al. (2002)の手法)

検討用地震の選定(2/4)

2) プレート間地震

検討用地震の選定(3/4)

3) 海洋プレート内地震

プレート内地震の地震動の応答スペクトル【水平】 (Noda et al. (2002)の手法に補正係数を考慮)

対象震源位置

検討用地震の選定(4/4)

選定結果は原科研と同様

応答スペクトルに基づく地震動評価

解放基盤表面の地震動として評価できること、震源の拡がりを考慮できること、敷地 における地震観測記録等を用いて諸特性を考慮できること、水平方向及び鉛直方向 の地震動が評価できることから、<u>Noda *et al.*(2002)の手法</u>を採用する。

断層モデルを用いた手法による地震動評価

評価地点の震源近傍で発生した適切な地震観測記録が得られた検討用地震については、観測記録から要素地震を評価し、<u>経験的グリーン関数法</u>を用いて地震動を評価する。一方、適切な地震観測記録が得られていない検討用地震においては、<u>統</u>計的グリーン関数法を用いて評価する。

短周期側を経験的あるいは統計的グリーン関数法を用いて評価するとともに、長周 期側を理論的な手法(波数積分法)で評価し、両者を適切な周期帯で合成するハイブ リッド合成法を採用する。

経験的あるいは統計的グリーン関数法による地震動評価結果と、ハイブリッド合成 法による地震動評価結果を比較し、応答スペクトルが大きいものを最終的な地震動 評価結果として採用する。

これら地震動評価においては、地質調査結果や断層パラメータの不確かさを適切に考慮した解析を行う。

地震動評価手法の選択(2/2)

地震動評価 - 鹿島灘の地震 - (1/11) 鹿島灘の断層モデルは同様

1) 断層モデルのパラメータ設定

・基本的な設定条件

地震動評価 - 鹿島灘の地震 - (2/11)

1) 断層モデルのパラメータ設定(基本設定フロー)

地震動評価 - 鹿島灘の地震 - (4/11)

1) 断層モデルのパラメータ設定(基本パラメータ)

項目		設定	設定値項目		項目	設定値	
	気象庁マグニチ	ュード M _j	7.3	3	ア	面積 S _{a1} (km ²)	722
	モーメントマグニ	チュード M _w	7.4	1	ス	応力降下量 _{a1} (MPa)	6.27
		北緯 (°)	36 36	10	リテ	平均すべり量 D _{a1} (cm)	223.7
	埜华只	東経(°)	141 23	28	1	地震モーメント M _{0a1} (N·m)	7.75 × 10 ¹⁹
	断層上端深さ(k	m)	35.	0	ア	面積 S _{a2} (km ²)	306
	断層長さ L(km)	54.	0		応力降下量 _{a2} (MPa)	6.27
巳 視	断層幅 W(km)		54.	0	リテ	平均すべり量 D _{a2} (cm)	158.2
的 断	断層面積 S(kn	1 ²)	291	6	2	地震モーメント M _{0a2} (N·m)	2.32 × 10 ¹⁹
層面	走向(NE)		209	9		面積 S _b (km ²)	1888
	傾斜角(°)		22	,	背 景	応力降下量 _b (MPa)	1.25
	破壊伝播形式		同心F	9状	領域	平均すべり量 D _b (cm)	47.0
	S波速度(km/s)		4.0)		地震モーメント M _{ob} (N·m)	4.26 × 10 ¹⁹
		(m/s)	2.8	8			
	地震モーメント	$M_0(N \cdot m)$	1.41 ×	10 ²⁰			
	平均応力降下量	(MPa)	2.1	9			

地震動評価 - 鹿島灘の地震 - (5/11)

1) 断層モデルのパラメータ設定(基本パラメータ)

地震動評価 - 鹿島灘の地震 - (6/11)不確かさの考慮は原科研と同様

	甘木的た電源西書	不確かさ	さの考慮
	基 平的な辰 ぷ 安糸	率本的な展 <i>际安系</i> アスペリティ位置	
モデル図	37'19 im in 30'00 in in 36'30 in in 36'40 in in 36'40 in in	37 19 0 0 0 0 0 0 0 0 0 0 0 0 0	37 19 0 36 49 36 49 36 53 57 00 58 49 56 50 57 00 大洗研 0 140 ³ 30 ² 141 ³ 30 ² 141 ³ 30 ² 142 ² 00 ²
不確かさの 設定に ついて	・地震規模は、1896年鹿島灘の地震 の規模よりMj7.3と設定 ・断層位置は、1896年鹿島灘の地震 の震央を断層面の中心に設定 ・アスペリティは、比較的大きいバッ クスリップが分布するプレート境界面 の浅い位置に配置 ・破壊開始点は、破壊が敷地に向か うよう全てのケースとも断層上端の 両端に設定	・アスペリティをサイトにより近い位置 に移動	・断層面の中心位置を、1896年鹿島 灘の震央位置からサイトと太平洋プ レートの最短距離の位置に移動 Case-1 Case-3
マグニ チュード	7.3	7.3	7.3
等価震源 距離[km]	72	63	55

1) 断層モデルのパラメータ設定(不確かさの考慮)

地震動評価 - 鹿島灘の地震 - (7/11)

	不確かさ	田丰州雪	
	地震の規模	短周期レベル	安糸地辰
モデル図	37 19 37 09 36 49 36 19 36 19 36 00 36 000000000000000000000000000000000000	37 19 37 0 37 0 36 40 56 57 56 10 57 10 56 10 57 10 58 10 59 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50	37 19 37 00 36 40 36 19 36 40 36
不確かさの 設定に ついて	 ·茨城県~福島県沖のプレート間地 震の最大規模(M7.5、1938年福島 県沖の地震)や地震地体構造マップ を参考に、地震の規模をM7.5に変更 した。 ·地震規模を変更することにより、地 震モーメント、短周期レベル、断層面 積、すべり量、アスペリティ面積を変 更した。 	 の短周期レベルは、鹿島灘付近の地震の平均的なスケーリング則に則り設定したが、では最大規模のスケーリング則に基づき設定した。 ・A-Moのスケーリング則は応力降下量()一定の条件で成り立っており、短周期レベルを増加させると応力降下量も増加させたことになる。 	 ・断層モデルの解析(経験的グリーン 関数法)に用いる要素地震を変更した。(2004年4月4日茨城県東方沖の 地震(M5.8)) ・断層モデルの各パラメータは と同 じである。
マグニ チュード	7.5	7.3	7.3
等価震源 距離[km]	74	68	72

1) 断層モデルのパラメータ設定(不確かさの考慮)

地震動評価 - 鹿島灘の地震 - (8/11)

地震動評価 - 鹿島灘の地震 - (9/11)

2) 応答スペクトルに基づく手法(全ケース)

 基本ケース、	要素地震
 アスペリティ位	置
 断層面位置	
 地震の規模	
 短周期レベル	

地震動評価 - 鹿島灘の地震 - (10/11)

断層モデルを用いた手法: 太線 : 破壊開始点1 基本ケース 3) アスペリティ位置 細線: 破壊開始点2 断層面位置 経験的グリーン関数法(全ケース) 地震の規模 実線 : NS方向、UD方向 短周期レベル 破線 : EW方向 要素地震 conte (cm/s) (cm) (cm) (h=0.05) (h=0.05) 1000 1000 ,000 .7 500 , de 500 500 200/ 200 200 200 0 , Ø 100 100 5 \$ 50 50 20 20 速 速 度 10 度 10 (cm/s) (cm/s) 0 ?.oz 5 5 2 2 1 1 0.5 0.5 0.2 0.2 0.1 0.02 0.1 2 0.05 0.1 0.2 0.5 5 1 10 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 周 期(s) 周 期(s) 水平成分 鉛直成分

地震動評価 - 鹿島灘の地震 - (11/11)

3) 断層モデルを用いた手法: ハイブリッド合成法(短周期レベル、破壊開始点1)

太線 : ハイブリッド合成結果 細線 : 経験的グリーン関数法結果

地震動評価 - 茨城県南部の地震 - (1/9)茨城県南部の断層モデルは同様

1) 断層モデルのパラメータ設定

地震動評価 - 茨城県南部の地震 - (2/9)

▶ 中央防災会議「東京湾北部直下のプレート内地震」の断層パラメータ

中央防災会議では、首都圏 を対象とした「茨城県南部 のフィリピン海プレート内地 震」の強震動評価を行って いない。 これは、「茨城県南部のフィ リピン海プレート間地震」の 方が地震動のレベルが大き いためである。 しかしながら、同じフィリピン 海プレートで発生する「東京 湾北部直下のプレート内地 震」については強震動評価 を実施している。 「東京湾北部直下のプレート 内地震」の断層モデルを参考 に、「茨城県南部の地震」の

5/	ペラメ-	・タを設定し	た。

断層帯	ブレート内	
緯度(")	35.546	
経度(゜)	140.017	
上端深さd(km)	45	
長さL(km)	54.53	logL=0.5Mjma-1.88
幅W(km)	26.41	
走向 θ	300	
傾斜る(゜)	90	
すべり角入(゜)	-90	
マグニチュードMjma	7.2	logMo=1.5Mjma+16.2
地震モーメントMo(Nm)	1.12E+20	logMo=1.5Mw+16.1(金森)
モーメントマグニチュードMw	7.3	
マクロ的に見たバラメータ		
断層面積S(km ²)	1440	$\Delta \sigma = 7 \pi^{15} / 16 \times M_0 / S^{15}$
S波速度Vs(km/s)	3.5	地殻内の平均的値
平均密度 p (g/cm ³)	2.8	地殻内の平均的値
剛性率 $\mu(N/m^2)$	3.4E+10	$\mu = \rho V s^2$
平均的な応力パラメータ△σ(MPa)	5	
平均すべり量D(m)	2.27	Mo= µ DS
破壊伝播速度Vr(km/s)	2.5	Vr=0.72Vs
要素断層の大きさ(km)	2.0X2.0	net wertikteten
要素断層の数(アスペリティ)	77	
要素断層の数(背景領域)	274	
C(km)	2.8	
Fmax(Hz)	6	兵庫県南部地震の観測記録から推定された値
fc(Hz)	0.061	$fc=4.9 \times 10^6 Vs (\Delta \sigma / Mo)^{1/3}$
短周期レベルA(Nm/s ²)	1.64E+19	$A=M_0 \times (4.9 \times 10^6 V_s (\Delta \sigma / M_0)^{1/3} \times 2\pi)^2$
アスペリティ等内部パラメータ	1	
アスペリティの総面積Sa(km ²)	316	Sa=S × 0.22
アスペリティ内の平均すべり量Da(m)	4.56	Da=D × 2.01
アスペリティでの総モーメントMoa(Nm)	4.95E+19	Moa= µ DaSa
要素断層の平均モーメント	6.26E+17	
アスベリティの総応力パラメータΔσa(MPa)	21.5	⊿σ=2.436Mo/S ^{1.5}
fc(Hz)	0.130	fc=4.9 × 10 ⁶ Vs(⊿σa/Moa) ^{1/3}
短周期レベル(Nm/s ²)	3.29E+19	$A = M_{oa} \times (4.9 \times 10^6 V_s (\Lambda \sigma a / M_{oa})^{1/3} \times 2\pi)^2$
背景領域		
面積Sb(km ²)	1124	Sb=S-Sa
地震モーメントMob(Nm)	6.27E+19	Mob=Mo-Moa
要素断層の平均モーメント	2.23E+17	94505 T270000 (C.C.M.S.) 824
すべり量Db(m)	1.63	Mob= µ DbSb
応力パラメータ⊿σb(MPa)	4.1	∠σ=2.436Mo/S ¹⁵
fc(Hz)	0.069	fc=4.9 × 10 ⁶ Vs ($\Delta \sigma b / Mob$) ^{1/3}
短周期レベル(Nm/s ²)	1.17E+19	A=Mob x $(4.9 \times 10^{6} \text{Vs} (\Lambda \sigma h/\text{Mob})^{1/3} \times 2\pi)^{2}$

表4.2.3 東京湾北部直下のプレート内地震の断層パラメータリスト

地震動評価 - 茨城県南部の地震 - (3/9)

地震動評価 - 茨城県南部の地震 - (4/9)

1) 断層モデルのパラメータ設定(基本パラメータ)

	項目			直
	気象庁マグニチ	ュード M _j	7.3	
	モーメントマグニ	チュード M _w	7.3	
	++ >++ -	北緯(°)	36 01	02
	- 本中只 	東経(°)	140 32	33
	断層上端深さ(ki	m)	30.0	
_	断層長さ L(km)		54.53	
巨 視	断層幅 W(km)	26.41		
的 断	断層面積 S(km	1440.00		
層面	走向(NE)		296	
щ	傾斜角 (°)		90	
	破壊伝播形式		同心円状	
	S波速度(km/s)		4.0	
	破壊伝播速度(km/s)		2.88	
	地震モーメントー	$M_0(N \cdot m)$	1.12 × 10 ²⁰	
	平均応力降下量	(MPa)	5.00	

	項目	設定値
ע	面積 S _a (km ²)	315.99
, スペリティ	応力降下量 _a (MPa)	21.43
	平均すべり量 D _a (cm)	326
	地震モーメント M _{0a} (N·m)	4.95 × 10 ¹⁹
背景領域	面積 S _b (km ²)	1124.43
	応力降下量 _b (MPa)	4.05
	平均すべり量 D _b (cm)	116
	地震モーメント M _{ob} (N·m)	6.26 × 10 ¹⁹

地震動評価 - 茨城県南部の地震 - (5/9)

1) 断層モデルのパラメータ設定(基本パラメータ)

地震動評価 - 茨城県南部の地震 - (6/9) 不確かさの考慮は原科研と同様

地震動評価 - 茨城県南部の地震 - (7/9)

2) 応答スペクトルに基づく手法(全ケース) <u>***</u> ^{基本ケース}

地震動評価 - 茨城県南部の地震 - (8/9)

 3) 断層モデルを用いた手法: かいでのです。
 3) 断層モデルを用いた手法: かは、 な壊開始点1 かんは、 な壊開始点2
 知線: 破壊開始点1 知線: 破壊開始点1 知線: 破壊開始点2
 知線: 破壊開始点2
 知線: 酸壊開始点2
 知線: 酸壊開始点2
 知線: 酸壊開始点2
 知線: WS方向, UD方向
 破線: EW方向

地震動評価 - 茨城県南部の地震 - (9/9)

太線 : ハイブリッド合成結果 細線 : 統計的グリーン関数法結果

地震動評価 - F3~F4断層 - (1/10) F3~F4断層の断層モデルはほぼ同様

1) 断層モデルのパラメータ設定(基本設定フロー)

地震動評価 - F3~F4断層 - (2/10)

1) 断層モデルのパラメータ設定(基本パラメータ)

項目			設定値			
巨視的断層面	気象庁マグニチュード M _j		6.8	6.8		
	モーメントマグニチュ	-ŀ M _w	6.3	6.3		
	基準点	北緯 (°)	36 20 47	36 20 47		
		東経 (°)	140 38 08	140 38 08		
	断層上端~下	端深さ(km)	4.0 ~ 16.0	5.0 ~ 18.0		
	断層長さ L(k	(m)	16.0	16.0		
	断層幅 W(kr	n)	14.0	15.0		
	断層面積 S(km²)	224.0	240.0		
	走向(NE)		200.8	200.8		
	傾斜角 (°)		60	60		
	破壊伝播形式		同心円状	同心円状		
	S波速度(km/s)		3.6	3.6		
	破壊伝播速度(km/s)		2.59	2.59		
	地震モーメント M	$I_0(N \cdot m)$	3.18 × 10 ¹⁸	3.53×10^{18}		
	平均応力降下 (MPa)		2.3	2.3		

)
0 ¹⁸
)
3 40.0 9 13.89 2 84.1 10^{18} 1.18×10^{18} 7 200.0 8 2.78 5 33.6 10^{18} 2.35×10^{18}
0 ¹⁸

地震発生層の検討に基づき、 断層上下端深さについて多角 的に検討する。

地震動評価 - F3~F4断層 - (3/10)

1) 断層モデルのパラメータ設定(基本パラメータ)

地震動評価 - F3~F4断層 - (4/10) 不確かさの考慮は原科研とほぼ同様

1) 断層モデルのパラメータ設定(不確かさ考慮)

上段は断層上下端深さ4~16km、

下段は断層上下端深さ5~18km

* 松田(1975)に基づき断層長さから評価

地震動評価 - F3~F4断層 - (5/10)

1) 断層モデルのパラメータ設定(不確かさの考慮)

検討用地震として選定したF3~F4断層に関する各パラメータについて、 地震動への影響の程度を検討し、敷地に大きな影響を与えると考えられる パラメータに対して不確かさを考慮した。

		断 層 傾斜角	アスベリティ 位置	破壊 開始点	短周期 レベル	断層上下端 深さ	備考	
基本ケース		60 ^{。 1} (西傾斜)	断層北部 2	アスペリティ 北下端	レシピ平均			
不確かさ考慮	アスペリティ位置	60 ^{。 1} (西傾斜)	敷地直下	アスペリティ 中央下端	レシピ平均	4~16km 及び 5~18km		
	断層傾斜角	45 ° (西傾斜)	断層北部 2	アスペリティ 北下端	レシピ平均			
	短周期レベル	60 ^{。 1} (西傾斜)	断層北部 2	アスペリティ 北下端	1.5倍		中越沖地震 知見反映	
多角的に検討する								

不確かさを考慮したパラメータ

1:調査結果より高角の断層として設定

2:後期更新世以降の活動が否定できないF3断層北部に配置

地震動評価 - F3~F4断層 - (6/10)

2) 応答スペクトルに基づく手法(全ケース) <u>
本本ケース、短周期レベル</u>太線:断層上下端深さ4~16km アスペリティ位置 新層(約)

地震動評価 - F3~F4断層 - (7/10)

 3) 断層モデルを用いた手法:
 統計的グリーン関数法(全ケース)
 基本ケース アスペリティ位置 断層傾斜角 短周期レベル
 基本ケース アスペリティ位置 断層傾斜角 短周期レベル
 太線: MS方向、UD方向 破線: EW方向
 太線: 断層上下端深さ4~16km 細線: " 5~18km

地震動評価 - F3~F4断層 - (8/10)

地震動評価 - F3~F4断層 - (9/10)

地震動評価 - F3~F4断層 - (10/10)

