原子炉建屋基礎盤への入力地震動評価

KUR直下の地下構造モデル

層番号	層厚(m)	深さ(m)	P波速度 (m/s)	S波速度 (m/s)	密度 (g/cm³)	Layer Name	
1	2	0	380	170	1.80	U1	
2	5	2	680	177	1.69	U2	
3	0.3	7	1350	200	1.75	U3	
4	6.7	7.3	1593	363	1.79	Oc1	
5	1	14	1600	480	1.63	Os1	
6	8	15	1615	400	1.85	Oc2	
7	7	23	1140	381	1.83	Os2-1	
8	5	30	1140	402	1.94	Os2-2	
9	10	35	1689	405	1.91	Oc3	
10	2	45	1605	490	1.97	Os3	
11	3	47	1293	450	1.89	Oc4	
12	3	50	1767	480	1.90	Os4	
13	3	53	1553	497	2.00	Oc5	
14	7	56	1816	550	2.00	Os5	
15	28	63	1820	525	2.00	Oc6	
16	12	91	1862	573	1.97	Os6	
17	2	103	1805	545	2.00	Oc7	
18	2	105	1845	545	2.01	Os7	
19	7	107	1816	559	1.99	Oc8	
20	22	114	1915	540	1.99	Os8-1	
21	10	136	1962	579	2.04	Os8-2	
22	15	146	1903	597	1.95	Oc9	
23	14	161	2105	739	2.06	Os9	
24	6	175	2708	982	2.19	R1	
25	3	181	3517	1597	2.41	R2	\leftarrow
26	_	184	4898	2436	2.49	R3	

KUR基礎設置層

風化花崗岩

花崗岩(開放基盤に設定)

U: 埋め戻し土 Oc:粘土層 Os:砂礫層

R: 花崗岩

観測記録のシミュレーションによる地下構造モデルの検証

検証方法 (1) 地下200mから地表までの地震動の増幅特性の評価 (2) 地下200mの観測記録を入力とした地表地震動のシミュレーション結果と観測波形の比較

建成分 10-0 100.00 1.88-1 144 110-0 - 11 SE AD 444 100 住用が 0.0.16 10-00 -----1.66.-0 ------HOLDW - 44 diff.EW 0.0E.2W 186 444

(2) 地下200mの観測記録を入力とした地表地震動の シミュレーション結果と観測波形の比較

KUR及び震央位置 震源位置:北緯34.260,東経135.947,深さ49km

基準地震動Ss-2

5. 建物・構築物の耐震安全性評価

ー原子炉建屋に関する評価ー

原子炉建屋及び原子炉棟の1階平面図

原子炉建屋断面図とSRモデル

基準地震動入力による地盤増幅(等価線形)解析モデル

地盤バネ解析モデル

動的地盤ばね(複素ばね)は埋め込みを考慮し、容積 法により求めた。この時の地盤モデルには、地震基盤 で定義された基準地震動Ssによる表層地盤の増幅特性 (等価線形)の計算に用いたパラメターを用いた。

建屋-地盤相互作用系における地盤バネの評価

CASE-2	X方向	Y方面
水平地盤はね定数 K _H (kN/m)	1.52E+07	1.52E+07
木平地盤減責係数 C _H (kN·s/m)	6.01E+05 (39%)	5.98E+05 (40%)
回転地盤はわ定数 Kg (kN·m/rad)	3.36E+09	3.36E+09
回転地盤減責係数 C _R (kN·m·s/rad)	6.23E+07 (22%)	6.24E+07 (23%)

内は等価減衰定数 ()

基準地震動		Ss-2 NS		Ss-2 EW		Ss-3 NS		Ss-3 EW	
種類	階	X方向	Y方向	X方向	Y方向	X方向	Y方向	X方向	Y方向
答最	RFL	1,416.4	1,230.0	993.0	916.9	1,324.0	1,076.2	1,356.1	1,160.9
度加大	3FL	1,352.6	1,118.9	972.1	888.5	1,189.0	1,019.6	1,217.7	1,086.6
速応	2FL	1,234.5	908.0	862.6	821.9	1,094.7	834.1	1,261.6	970.5
$[cm/s^2]$	1FL	727.6	717.5	698.3	702.5	560.4	604.7	744.8	735.2
	B1FL	592.3	628.9	686.9	687.7	480.1	525.3	634.0	660.0
₋ 変層	3F	1/5047	1/6549	1/7677	1/9784	1/5421	1/7877	1/5292	1/7130
^円 形間	2F	1/2115	1/3595	1/3503	1/5102	1/2563	1/4271	1/2477	1/3851
[rad]	1F	1/1010	1/2696	1/1888	1/3557	1/1224	1/3061	1/1063	1/2753
	B1F	1/2908	1/7579	1/3944	1/8144	1/4342	1/8732	1/2765	1/7364
雇	3F	8,286	7,350	5,958	5,479	7,817	6,439	7,971	6,910
がせ	2F	14,543	13,017	10,946	9,983	13,648	11,391	13,796	12,335
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1F	20,553	18,373	15,872	14,757	19,263	16,678	20,184	18,133
[kN]	B1F	62,276	59,182	55,128	55,075	51,422	51,369	63,334	60,905

X方向

は最大応答値を示す

各階に生ずる最大層 せん断力は保有水平

耐力以下となっている。

	M	最大応等 居せん新力 <i>Q</i> 回 gg (140)	確認保有 水平耐ナ <i>C</i> uGN9	Qu/Qm az	最大応等 層せん新力 Qmar(N)	確認保有 水 ^立 耐力 <i>Q</i> ∎(k√)
と確認保有水平耐力	RL	8,286	> 19,91 <b>7</b> *	> 1.6	7,960	> 14,711*
し断力には上記表(建 基礎に生じろ水平荷	3F 2F	14,643	22,463	1.64	13,017	25,609
(金麗(C-100)パード) 96kN)を付加してい	1F	20,660	26,012	1.29	18,373	31,3 <b>02</b>
	B1F	65,042	100,459	1. <b>64</b>	<b>62,60</b> 1	\$1,544

最大応答層せん断力

※B1F-1F間の層せん 屋の応答)に原子炉棟 重(X;1708kN, Y:169 る。

※ 3階の保有水平前力については、3階よりト層階の繋が先にせん新耐力に進したため、 滞増弾撃性解射の最終ステップの水平力の値を記載している。

、方向

Qu /Qmax

> 2.0

1.97

1.70

1.90

## 建物・構築物の耐震安全性評価

#### 原子炉建屋安全性評価結果

各階に生ずる最大せん断ひずみ(●印)は評価基準値である2.0×10⁻³を超えないことを確認



# 6. 機器・配管系の耐震安全性評価

生体遮へい体は、1質点系モ デルに置換し、建屋1階床応答 波形入力による最大応答加速 度を求め、これら値から水平及 び鉛直震度を用いて応力度の 検討を行った。

炉心直下の1次配管は,単純 梁としてモデル化し,建屋1階床 最大応答加速度から,水平及 び鉛直震度を用いて応力度の 検討を行った。





生体遮へい体(左側)と炉心直下の1次冷却系配管(右側)



制御棒駆動装置は、単純支持された分布質 点系としてモデル化を行い、1階床応答波形 入力による最大応答加速度を求め、これら値 から水平及び鉛直震度を用いて応力度の検 討を行った。

制御棒(先端部)は片持梁としてモデル化し, 建屋1階床最大応答加速度から,水平及び 鉛直震度を用いて応力度の検討を行った。



制御棒駆動装置(案内管)(左側)及び制御棒(右側)

## 安全上重要な機器・配管系の耐震安全性評価

評価結果

発生値は評価基準値以下となっており、耐震安全性が確保されていることを確認した。

区分	評価設備・機器	応力度の 種類		発生値(N/mm²)	評価基準 値 (N/mm²)	評価
		五古	圧縮	1.6	14.0	0
閉じ込める	生体遮へい体*1	王王王	引張	1.0	1.4	0
		せん断		0.4	1.0	0
			垂直	113.0	137.2	0
止める	制御棒 · 制御棒駆 動装置	<b>柤</b> 調登用	せん断	0.5	79.3	0
		微調整用制御 棒 ^{*3}	垂直	3.5	42.1	0
			せん断	0.1	24.5	0
		ᄷᆘᄽᇟᆂᆂᄩᇟᆍᆂᆘᆂ ᄣ	垂直	44.0	54.8	0
		利仰悴恥 IJ装直	せん断	1.8	31.3	0
冷やす			垂直	5.7	126.4	0
	二次公扣系配倍 (后心声下)		せん断	0.6	31.3	0
	一次巾却未能官(炉心直下)		垂直	9.2	126.4	0
			せん断	1.0	31.3	0

*1 生体遮へい体基部の断面で検討,*2 制御棒取付ボルトで検討, *3 制御棒取付金具で検討, *4 案内管で検討

# 今後の予定

引き続き、研究用原子炉(KUR)の耐震安全性評価を実施し、実施計画書に従った最終報告を予定