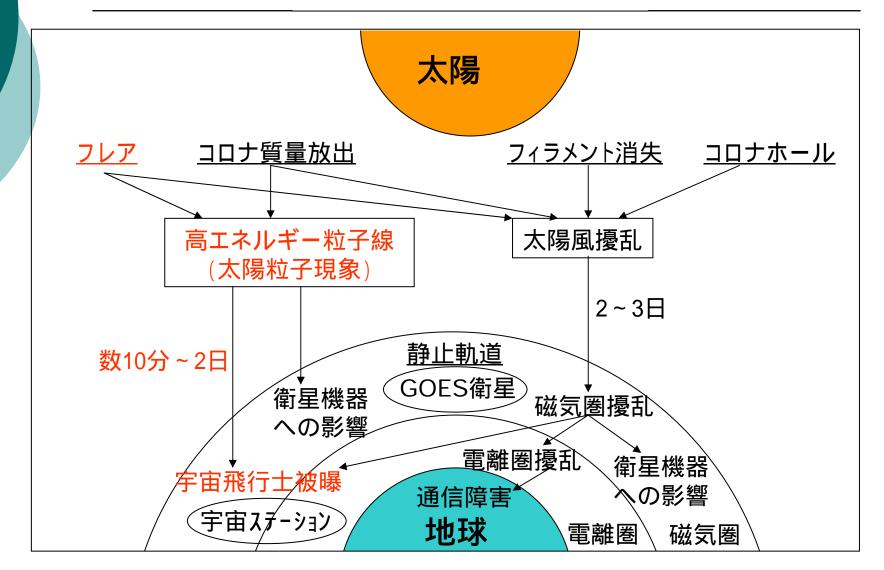


太陽フレアと宇宙天気予報~宇宙飛行士の放射線被曝管理~

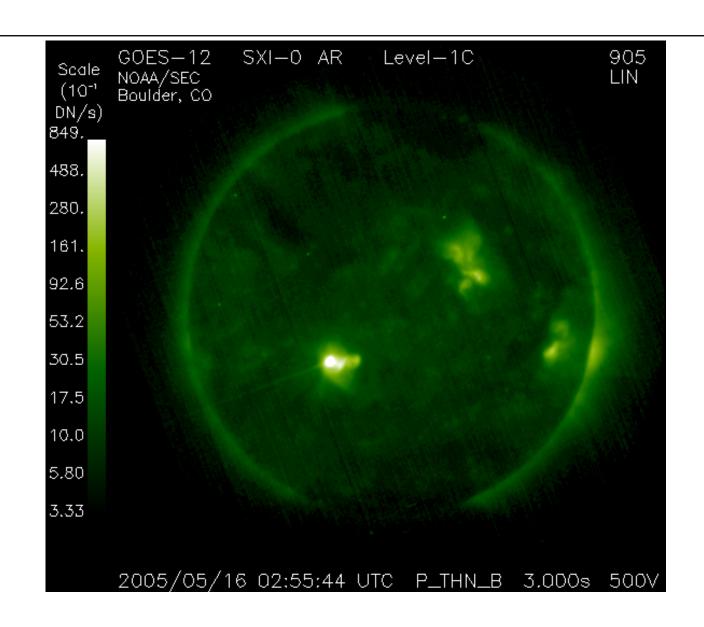
平成17年5月30日 第7回 放射線安全規制検討会航空機乗務員等の 宇宙線被ば〈に関する検討ワーキンググループ

> 矢部 志津 宇宙航空研究開発機構 有人宇宙技術部 宇宙医学グループ

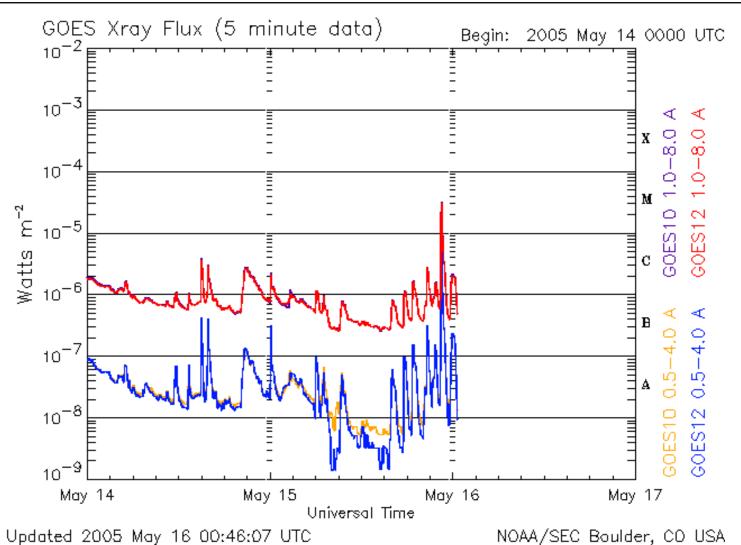


目次

- 1. 太陽フレアについて
- 2. 宇宙天気予報について
- 3.太陽フレア時の宇宙飛行士の放射線被曝管理について

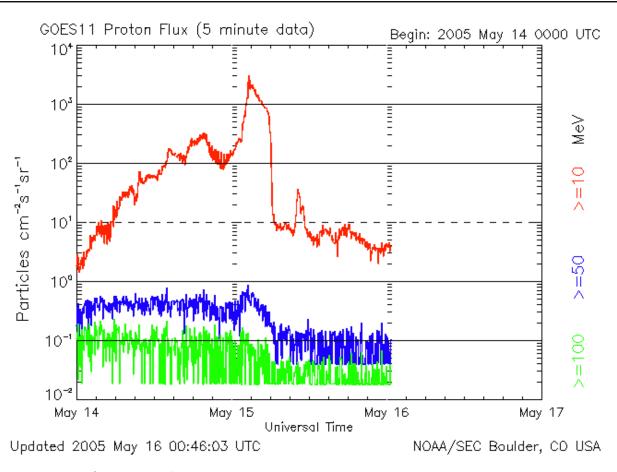

1.太陽フレアについて

太陽活動に関わる主な現象の関連と 地球到達時間



太陽表面観測

太陽からのX線の強度

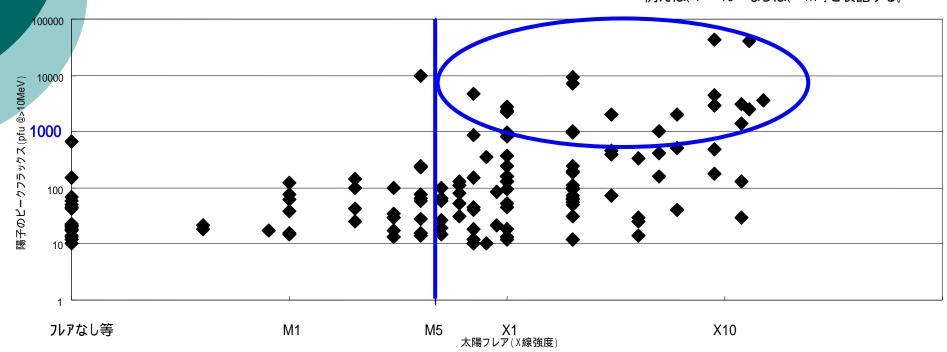


太陽フレアの規模と頻度

等級	分類	物理的測定 0.1-0.8nmのX線 強度のピーク値 (W/m²)	11年の太陽 周期あたりの 平均発生頻度 (回)
R5	Extreme	$X20$ (2 × 10^{-3})	1以下
R4	Severe	X10 (10 ⁻³)	8
R3	Strong	X1 (10 ⁻⁴)	175
R2	Moderate	M5 (5×10^{-5})	350
R1	Minor	M1 (10 ⁻⁵)	2000

米国海洋大気庁Space Weather Scaleより

太陽から地球静止軌道に到達する陽子



大型の太陽粒子現象の場合、フレアやコロナ質量放出発生後1~数時間後にフラックスが上昇し、その後一定のレベルもしくは緩やかな減衰を見せる。さらにその1~2日間後にさらに増大しピークとなることも多い。

* X線フレアのクラス: 0.1-0.8nmの波長域での強度を P*10^{-Q} [W/m2]と表したとき、Q>7ならばB、Q=6 ならばC、Q=5ならばM、Q 4ならばX。その時、 例えば、P*10⁻⁴ならば、「XP」と表記する。

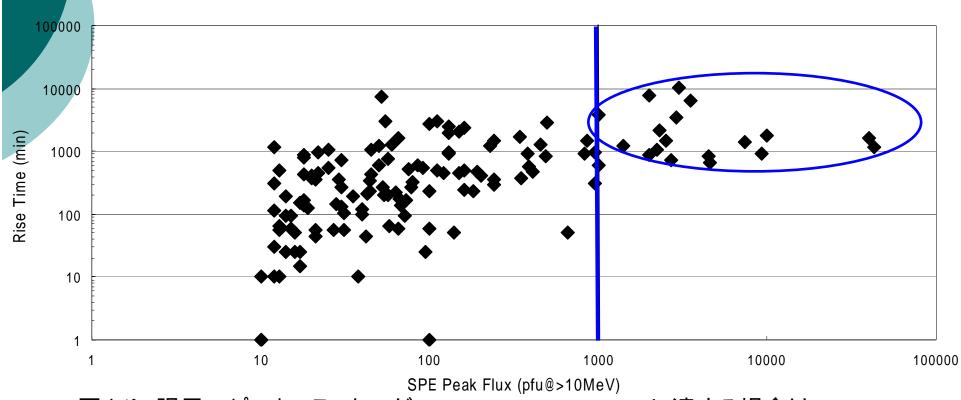
宇宙飛行士は静穏時でも1日約1mSvを被曝する。

シミュレーション計算より、太陽フレアで1mSv以上を被曝するのは、10MeV以上の陽子のピークフラックスが1,000 s-1·ster-1·cm-2の場合である。

図より、陽子のピークフラックスが1,000 s-1·ster-1·cm-2に達するのは、M5以上。

太陽粒子現象の規模と頻度

等級	分類	物理的測定 10MeV以上の粒子の数 (particles·s ⁻¹ ·ster ⁻¹ ·cm ⁻²)	11年の太陽 周期あたりの 平均発生頻度 (回)
S5	Extreme	10 ⁵	1以下
S4	Severe	10 ⁴	3
S 3	Strong	10 ³	10
S2	Moderate	10 ²	25
S1	Minor	10	50


米国海洋大気庁Space Weather Scaleより

赤字:宇宙飛行士の線量に影響する可能性

太陽粒子現象の開始から 陽子がピークになるまでの時間

図5-2 陽子ピークフラックスと立ち上がり時間の関係

図より、陽子のピークフラックスが1,000 s-1·ster-1·cm-2に達する場合は、 太陽粒子現象の開始から陽子がピークになるまでに数百分以上が経過している。 このため、陽子がピークに達する前に運用上の対策を実施することが可能と 考えられる。

2. 宇宙天気予報について

日本の宇宙天気予報の現状

○ 日本では、(独)情報通信研究機構が宇宙天気の 予警報業務を行っており、平磯太陽観測センターか ら日々の情報発信を実施している。

(独)情報通信研究機構の宇宙天気業務

- 各種観測データのリアルタイム入手
- 現況の分析及び各種経験則に基づいた 推移予測

- 太陽粒子現象の危険度の事前予測は困難であるが、経験則をもとにしたある程度の危険度評価と警報は可能。
- ▶大型太陽フレア等が発生した場合には、その発生位置や時間変化プロファイル等からプロトン 到達の可能性評価が行われている。

(独)情報通信研究機構の毎日の太陽フレア予報レベル

予報レベル	フレア発生確率	
静穏	Cクラスフレアの発生確率50%以下	
やや活発	Cクラスフレアの発生確率50%以上	
活発	Mクラスフレアの発生確率50%以上	
非常に活発	Xクラスフレアの発生確率50%以上	

http://hirweb.nict.go.jp/index-j.html

(独)情報通信研究機構の毎日のプロトン現象予報レベル

予報レベル

プロトン現象は発生しないでしょう。

プロトン現象の発生が予想されます。

強いプロトン現象の発生が予想されます。

非常に強いプロトン現象の発生が予想されます。

このプロトン現象は続くでしょう。

http://hirweb.nict.go.jp/index-j.html

米国の宇宙天気予報の現状

- * 米国においても日本と同様な予報業務を米国海洋 大気庁(NOAA: National Oceanic and Atmospheric Administration)が行っている。
- 米国においては、観測データを入力とし経験的モデルに基づいて、フレア発生直後に太陽粒子現象を予測するツールが用いられている。

3.太陽フレア時の宇宙飛行士の放射線被曝管理について

静穏時及び1972年巨大太陽フレア*時 線量のシミュレーション計算

		ステーション 引量 (mSv)	船外活動での線量 (mSv)	
線量の種類	静穏時平均 (1日あたり)	太陽フレア時 (1回あたり)	静穏時平均 (1日あたり)	太陽フレア時 (1回あたり)
実効線量	0.565	5.13	1.61	26.95
骨髄等価線量	0.55	5.03	1.495	25.84
水晶体等価線量	1.195	16.45	15.055	189.42
皮膚等価線量	0.77	10.27	6.535	151.15
精巣等価線量	0.605	6.08	1.79	34.79
卵巣等価線量	0.42	2.79	0.915	9.45

^{*}陽子ピークフラックス(10MeV以上)は23,000particles·s-1·ster-1·cm-2であった。

1989年巨大太陽フレア時 宇宙ステーションミールでの線量計測

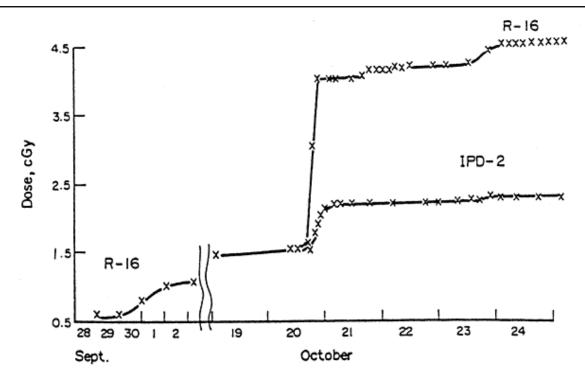


図 2 - 9 1989 年 10 月の太陽フレア時に、ロシアの MIR 内で計測された 積算線量の推移(R-16:環境モニタ、IPD-2:個人モニタ)

*Pergamon Press の許諾を得て転載(一部改変)(c)1992

陽子ピークフラックス(10MeV以上)は40,000particles·s-1·ster-1·cm-2であったため、 S5(Extreme)等級値の約半分にまで達している。 合計で20~40mSv程度の被曝線量になったことが示唆されている。

20

最近の大規模太陽フレア

○ 2003年10月にX17、X28等、観測史上最大級の太陽フレアが相次いで発生した。

(陽子のピークフラックス:

29,500 s-1·ster-1·cm-2)

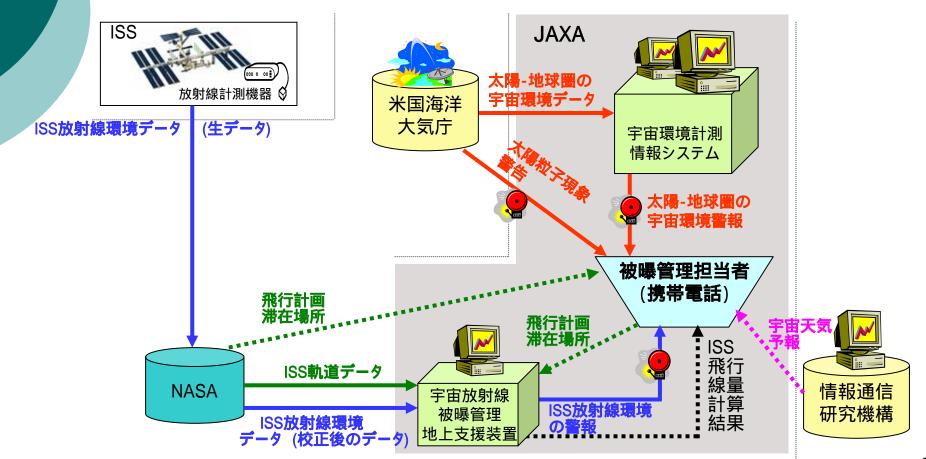
○ 2005年1月にX3.8、X7.1の太陽フレアが発生し、 多量の高エネルギー粒子が地球に到来した。

(陽子のピークフラックス:

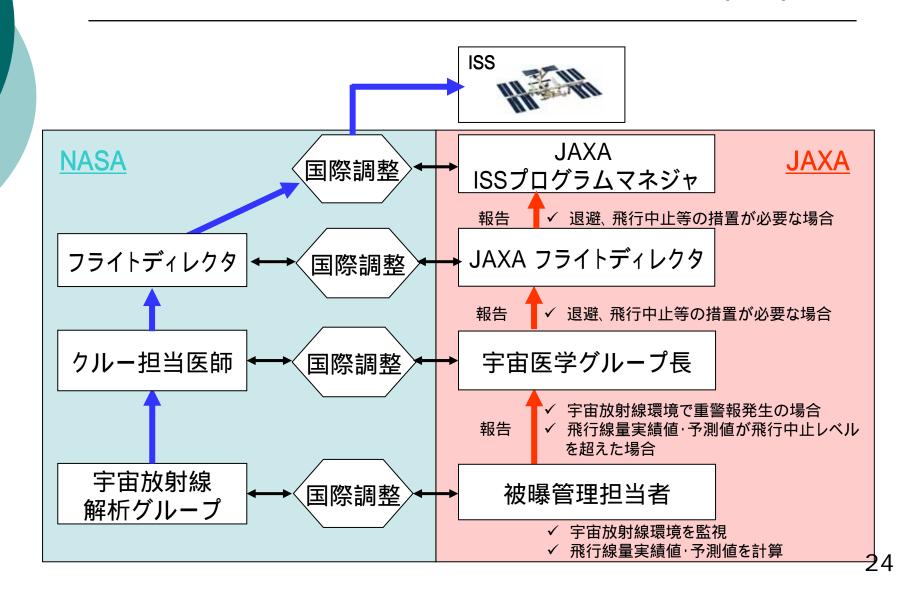
5,040 s-1·ster-1·cm-2)

国際宇宙ステーションでの対応

○ 2003年10月


高線量率時は、遮蔽の厚い場所である、ロシアモジュールの機尾かNASA実験モジュールの就寝場所へクルーが待避した。

○ 2005年1月


就寝中に予想外に放射線レベルが増加するおそれがあったため、予防策として、遮蔽の厚い場所で眠ることがクルーに指示された。

日本人が国際宇宙ステーション飛行中に JAXAが用いるデータの流れ(案)

実線はオンラインを、破線はオフラインを示す。

日本人が国際宇宙ステーション飛行中のNASA/JAXA緊急時アクションフロー(案)

用語補足

particles·s-1·ster-1·cm-2:

1秒、1立体角、1平方センチメートルあたりの粒子の個数

- フラックス: 時間あたりの粒子の個数
- 太陽フレアのクラス:

0.1-0.8nmの波長域(X線)での強度をP*10^{-Q} [W/m2]と表したとき、Q>7ならばB、Q=6ならばC、Q=5ならばM、Q 4ならばX。その時、例えば、P*10⁻⁴ならば、「XP」と表記する。

○ <u>W/m²</u>:

放射照度の単位。受光面の1平方メートルあたりに入射する放射束(単位時間あたりの光放射エネルギー)の量。