資料17-2

加速器施設等の解体に伴い 発生する廃棄物に対する クリアランスについて (検討状況 その1)

日本原子力研究所、高エネルギー加速器研究機構 平成17年3月28日

省景:

1)原子炉施設等(原子炉等規正法)においては、ク リアランスレベル検認手順がほぼ確立し、本年中 にクリアランス制度の法制化が予定されている。

2)大型の加速器施設の廃止措置が近々予定されてお り、これに伴い極めて放射能濃度が低いクリアラ ンス可能と思われる廃棄物が多量に発生する。

3) そこで、加速器施設等に対するクリアランスレベ ル検認について、技術的課題を検討し、合理的検 認が可能か検証する必要がある。

目的及び検討方針

目的: 加速器施設等の廃止措置に伴い発生する廃棄物の 中には、極めて放射能濃度が低いクリアランス可 能と思われるものがある。このような廃棄物に対 してクリアランス制度の導入が可能であるかを明 らかにする。 検討の方針: 1)既に検討が進んでいる原子炉施設に対するクリア ランスレベル検認手順をベースとする。 2)加速器施設等の特性を考慮して、同施設固有の課 題を明らかにする。

注) クリアランスレベルにはRS-G-1.7を適用

主な課題と対応

課題1:施設特性の把握 加速器の種類、核反応、対象物の元素組成調査

課題2:測定による放射能濃度評価 核種組成と濃度分布

課題3:計算による放射能濃度評価 核種組成と濃度分布 多種の核反応を考慮

課題4:核種組成比の誤差評価 クリアランスレベル検認の判断方法検討

原研の加速器施設等一覧

No.	施設名	名称	形式·線質	エネルギー (MeV) 電 流(mA)	MeV) 目的 (mA)		線量率 (Gy/sec)	所在地
1		FEL	500MHz 超電導線型加速器を用いた 自由電子レーザー	電子:10~20MeV 準平均4mA/10~20A 尖頭値:40ps 全平均40 u A	自由電子レーザーの研究	平5.7	光出力 1kW 平均	東海研
2	自由電子レーザ施設	2MeV バンデグラーフ	バンデグラーフ型 軽イオン及び特殊な重イオン	2 0.025(陽子) <u>0.010(窒素)</u>	物性物理材料の基礎研究	昭32.5 平15.3廃止		東海研
3		5.5MeV バデグラーフ	バンデグラーフ型 軽イオン	5.5 2.5(バルスのビーク値)	原子核物理、中性子物理、強力なパ ルス化中性子源の利用が可能	昭37.9 昭63.8廃止	~10 ⁸ n/sec (毎秒発生す <u>る中性子数</u>)	東海研
4	リニアック建家	120MeVリニアック	電子加速器	120 (500mA)	中性子断面積測定等	昭47.8 平6.9廃止		東海研
5	タンデム加速器建家	(3000) (法器建家 タンデム加速器 新り返しタンデムバンデグラー 陽子:5~40(3) フ型 浜ビイオン及び軍イオン (4)		陽子∶5~40(3́µA) 沃度1オン∶70~280) (1pµA)	材料、物理、核物理、核化学、中性 子物理等の研究			東海研
6	核融合中性子施設	FNS	重陽子加速器	0.4 ビーム電流: 23mA	核融合中性子工学の研究	昭56.4	5 × 10 ²	東海研
7	陽子加速器開発室		陽子加速器		大強度加速器の開発	平12.3		東海研
8	1号加速器棟	1号加速器	コッククロフト型 電子線	2 30	放射線利用の研究開発及び普及	昭56.2	1 × 10	高崎研
9	2号加速器棟	2号加速器	カスケード型 雷子線	3 25	放射線利用の研究開発及び普及	昭53.3	1 × 10	高崎研
10		AVF サイクロトン	AVF型サイクロトロン 軽イオン及び重イオン	陽子:90(10µA) アルコン:175(5µA) キセノン:450(0.2µA) 全:500(0.02µA)		平3.10		高崎研
11		3MV バンデグラーフ型 陽子:6(5 タンデム加速器 軽イオン及び軍イオン ニッケル:15		ー 陽子 : 6(5 μ A) ニッケル : 15(5 μ A)	宇宙環境材料、核融合炉材料、バイ	平3.3		高崎研
12	12ク照射研究施設 (TIARA)	3MV シングルエンド加速器	コッククロフト型 (シュンケル回路) 軽イオン	陽子 : 3(100 µ A) ヘリウム : 3(70 µ A) 雷子 : 3(50 µ A)	オ技術及び新機能材料の研究開発	平5.7		高崎研
13		400kV イオン注入装置	コックコロフト型 軽イオン及び重イオン	アルゴン: 0.4(50 µ A) リン: 0.4(30 µ A) 銀: 0.4(4 µ A)		平5.7		高崎研
14	線形加速器棟			電子 : 1.2GeV <u>陽電子 : 0.9GeV</u>	電子を加速し、シンクロトロンに射出			関西研
15	シンクロトロン棟	シンクロトン	直線加速器、シンクロトロン、 蓄積リング	電子∶8Gev	放射科学研究	平9.10		関西研
16	むつ 研究棟(タンデトロン)	タンデトロン			放射性核種の移行挙動の調査研究	昭47.7		むつ
17	那珂研 JT-60施設·実験棟	JT-60			核融合研究	昭58.7		那珂研

これまでの検討状況

原研で放射化が予想される加速器施設等を選択 放射能測定と放射化計算の実施

- 1) 評価対象施設(10MeV以上の施設で放射化が予想される主な原研施設) イオン加速器:タンデム、FNS、TIARA 電子加速器 :リニアック
- 2) 評価材料:コンクリート、金属
- 3) 放射化計算:

利用可能な既存の入力データ及び計算コード(DCHAIN - SP2001: 20MeV以下の中性子による放射化を評価可能)を用いて試算 (元素組成等については、NUREG-CR-3474値を使用しており、今後材料の元素分析などの 確認を進める。)

4) 放射能測定: 関連施設のコンクリートを対象(金属は測定継続中) 測定器: Ge半導体検出器による 核種測定 測定時間: 10,000秒(環境試料測定条件と同様、一部50,000秒)

(*本資料の計算値及び数値は、現段階での暫定値である。)

放射化計算条件

加油品		照射条件	運転履歴		
	加迷器	線源スペクトル]		
タン	デム照射室	¹⁸¹ Taと ²³⁸ U ¹² Cからの発生ス ペクトル角度毎にスペクトル形 状を設定(~2MeV)	6.85 × 10 ¹¹	予想運転時間の1,200時間/ 年を平均化、年間で連続して 稼動	
ENG	第1ターゲット室	全方位を合計したスペクトル 3.0×10 ¹¹ で等方放出		運転出力は直流(2mA)とパル ス(0.2mA)の2種類とし、運転	
FINO	第2ターゲット室	0度方向のスペクトルで等方 放出	5.0 × 10 ¹²	時間は各年度末に一括で稼 動	
LINACターゲット室(Tc)		Tcターゲット室スペクトルで等 方放出(~1MeV)	3.0 × 10 ¹⁴	運転出力は50µAとし、運転 時間は各年度末に一括で稼 動	
	第1軽イオン室	陽子(68MeV)、銅ターゲットか らの発生スペクトル	8.0 × 10 ¹²	2003年度の運転履歴から年間の平均出力を算出。運転時	
TIARA	第2軽イオン室	角度毎にスペクトル形状を設 定(0~10MeV最多)		間は各年度末に一括で稼動	
	第3軽イオン室		8.0 × 10 ¹¹		

主な使用計算コード:ANISN(断面積縮約)、TORT(X,Y,Z中性子束計算)、DCHAIN-SP2001(放射化計算)

FNS第2ターゲット室におけるコンクリート中の放射能濃度分布 8

放射化計算(暫定値)及び測定結果-2 例:コンクリート

TIARAにおけるコンクリート中の放射能濃度分布

放射化計算(暫定値)及び測定結果-3例:コンクリート

放射化計算結果

測定結果

LINACにおけるコンクリート中の放射能濃度分布 10

測定結果-4 例:コンクリート

核種放射能濃度(Bq/g)22Na<7.2 × 10-3 (ND)</td>54Mn<9.3 × 10-3 (ND)</td>60Co<6.5 × 10-3 (ND)</td>134Cs<5.2 × 10-3 (ND)</td>152Eu<1.7 × 10-2 (ND)</td>

測定結果

ND: 検出限界值以下

中性子ターゲット室平面図

タンデムにおけるコンクリート中の放射能濃度分布 11

放射化計算(暫定)と放射能測定の結果概要

放射能測定結果

- 1) 線放出核種が検出された施設:FNS、TIARA、リニアック
- 2) 線放出核種が検出されなかった施設 : タンデム

放射化計算値(暫定値)と放射能測定値の比較 1) FNS 2) TIARA 3) リニアック : ²²Na(一部光核反応で生成)を除く 核種組成が一致

理由;²²Naについては光核反応(,,n)の放射化計算 が必要 (H17年度実施)

JT-60における金属中の 放射化検出核種濃度

照射物:ステンレス、インコネル、高Mn鋼、鉄 照射:2001年10月23日~11月9日 中性子発生量:1.5×10¹⁸個 半減期:100日以上

JT-60における金属中の放射化検出核種濃度

材質	反応	核種	濃度(Bq/g)
ステンレス	⁵⁹ Co(n,) ⁵⁴ Fe(n,p)	⁶⁰ Co ⁵⁴ Mn	3 × 10 ⁻² 8 × 10 ⁻³
インコネル	⁵⁹ Co(n,)	⁶⁰ Co	1 × 10 ⁻²
高Mn鋼	⁵⁹ Co(n,) ⁵⁴ Fe(n,p)	⁶⁰ Co ⁵⁴ Mn	6 × 10 ⁻³ 2 × 10 ⁻²
鉄	⁵⁴ Fe(n,p)	⁵⁴ Mn	6 × 10 ⁻³

金属については、現在測定を継続中であり,今後 測定データの収集整備を進める。

まとめ

検討結果

放射性核種濃度は、放射化計算で選定された核種を基に、 放射能測定により十分確認することができる。

今後の進め方

- 1) 放射化計算の更なる高精度化を進める為、対象物の材料毎の 元素組成など詳細な情報を調査する。
- 2) 不確実さを考慮したクリアランス判断を行うため、核種組成比(SF) の分布を実測し、放射化データを収集整備する。
- 3) 合理的に計測できる 線放出核種(例えばCo-60,Mn-54,Eu-152等) で信頼性のある検認が可能かどうかの検討を進める。
- 4) クリアランスレベル検認に係る技術的方法、手順の策定を進める。

加速器施設等の解体に伴い発生する廃棄物 に対するクリアランスについて

(検討状況 その1)

検認手順と検討課題

参 - 1

参 - 2 - 1

加速器施設等の放射化とその特性 (原子炉施設との比較)-1

発生機構 1) 核反応 原子炉施設 :核反応は主にn,反応、放射化濃度レベルが高い 加速器施設 :核反応は多種 (n, 、n,p、 ,n反応他) 陽子、重イオンによる核反応 *加速器施設の放射化は、基本的には2次中性子と制動放射線で発 生。放射化濃度レベルが低い 2) 放射化に係る照射条件 原子炉施設:定格出力、定常運転 運転履歴と機器配置等から放射化計算による核種及びその濃度 の推定が可能 加速器施設:加速粒子、エネルギー、ターゲット等が多種多様 運転履歴、加速器性能等からの放射化計算による核種及びその 濃度の推定は困難 測定による推定が必要

参 - 2 - 2

(**単位**:t)

加速器施設等の放射化とその特性

解体廃棄物の発生量(推定)

日本原子力研究所 施設種類 **KEK** 大型放射線発生 イオン照射 タンデム 12GeV陽子加速器 装置を全数解体 研究施設 廃棄物種類 加速器 した場合 (TIARA) 放射性廃棄物 40,000 46,000 2,400 3,700 (低レベル、極低レベル) クリアランス対象廃棄 69,000 23,000 3,200 5.000 物 放射性廃棄物でない廃 430,000 95,200 41,000 85,000 棄物 計 合 499,000 90,600 103,900 150,000 :高崎研、那珂研、 関西研及び東海研陽子加速器開発室、 タンデム加速器、 リニアックを積算

原子炉施設との比較

クリアランス対象の材料

原子炉施設:

鉄及びその合金(ステンレス、炭素鋼)、コンクリート(重コン、普通) 加速器施設等:対象材料が原子炉施設に比べて多様 鉄及びその合金(ステンレス、炭素鋼)、アルミ及びその合金、銅等、 コンクリート(重コン、普通) クリアランス対象の汚染特性 汚染特性 原子炉施設:放射化及び二次的汚染 二次的汚染物質の挙動:核種の化学的特性によって変化 加速器施設:放射化のみ 生成放射化物:材料中に固定 スケーリングファクター(SF)の成立性 原子炉施設:放射化 成立(一部、平均放射能濃度法による) 二次的污染 あり 成立(今後もデータ収集を進める) 加速器施設:放射化 なし 二次的污染

参 - 2 - 3

(参考:クリアランス濃度 Eu-152:0.1、Co-60:0.1、Cs-134:0.1、Mn-54:0.1、,Na-22:0.1、Sc-46:0.1、,Be-7:10、H-3:100(Bq/g))

参-3-1

放射化計算による放射能濃度Dを基に、 クリアランスレベルCとの比D/Cの評価例

- 1) クリアランスレベル:RS-G-1.7を適用する。
- 2) 停止後0.5年経過後の冷却期間をおいたものとして核種濃度を評価する。

(廃止決定から半年で申請手続き実施を想定)

- 3) 各施設における材料毎に放射化計算を実施
- A) D/C:評価対象核種の濃度(D)をクリアランスレベル(C) で除したもの

D/Cが最大値の核種:最重要核種

相対重要度:最重要度核種のD/Cを1として規格化

5) 結果:放射化試算による放射性核種組成に基づく 相対的な重要度について核種評価結果を表1に示す。 コンクリートでは、最重要核種から約2桁目までを放 射能測定で検出した。但し、 核種のみの測定であり、 次年度に難測定核種についてのデータを収集の予定。 また、金属に関する測定データの収集をあわせて実施 する予定。

参-3-2

RS-G-1.7における評価の概要

評価の前提条件	 食物、飼料等以外の固体状物質を想定している。 大量(1トンオーダー以上)の固体状物質に対して、人工放射性 核種については、一般免除レベル(一般クリアランスレベル)を 導出している。天然放射性核種については除外の概念からレ ベルを導出している。
基準値の導出方法	 【人工起源の放射性核種】 ●代表的な被ば〈シナリオを設定し、核種毎に各シナリオに対して標準と考えられる人が受ける被ば〈線量を計算する。この時、 被ば〈線量が最も高〈なるシナリオを決定経路とする。決定経路における被ば〈線量を線量規準に対する放射能濃度に換算し、核種毎のクリアランスレベルとする。
線量規準値	 通常に考えられるシナリオに対して 10 µ Sv/y 発生頻度が小さいと考えられるシナリオに対して 1mSv/y (実際には可能性が低いと考えられるパラメータを使用) 皮膚の被ばくに対して 等価線量50mSv/y
シナリオの選定方法	●各国の評価事例をもとに重要かつ包括性があると考えられる シナリオを抽出している。過度に保守的にならないよう選定

参-3-3

RS-G-1.7で考慮されている評価経路

経路	評価対象者被ばく		評価経路の内容	評価対象物		
輸送作業	作業者	外部	トラック運転手の作業	装置、トラック積荷		
勿分提▽	作業者	外部、吸入、 経口摂取	処分場又は鋳物工場以外の施設での作業	埋設する汚染物質、 ダスト		
は鋳物工		皮膚汚染	作業者のダストからの皮膚汚染	ダスト		
場以外の 施設	居住者(子供)	吸入、	周辺居住者が施設から放出されたダストを吸入、	ダスト、		
	居住者(成人)	経口摂取	ダストが沈着して汚染した土壌で栽培された 農作物を摂取	汚染土壌での栽培食 物		
鋳物工場	作業者	外部、吸入、 経口摂取	鋳物工場での作業	装置、 スクラップ、 ダスト		
	居住者(子供)	吸入	鋳物工場周辺に住む子どもがダストを吸入	ダスト		
家の建材 への再利 用	居住者(成人)	外部	汚染した材料で建設された家に居住	汚染建材		
公共物へ の再利用	居住者(子供)	外部、吸入、 経口摂取	汚染した材料で建設した公共場における子 どもの外部被ば〈、ダストの吸入、経口摂取	汚染再利用物、 ダスト		
地下水移 行	居住者(子供) 居住者(成人)	経口摂取	井戸水の飲用、農作物摂取、淡水産物の摂 取	井戸水、食物、魚		

クリアランス適用対象物としてRS-G-1.7は食物、飲料水等を除いた物質、委員会報告書は主に金属、コンクリートを想定

暫定値

表1	試算による放射性相	亥種組成に基づく
	相対重要度評価例	(停止0.5年後)

施設名	FNS					TIARA			LINAC						
材質	コンクリート	ステンレス鋼	炭素鋼	アルミ	銅	コンクリート	ステンレス鋼	炭素鋼	アルミ	銅	コンクリート	ステンレス鋼	炭素鋼	アルミ	銅
最重要核種	Co 60 (65.6)	Co 60	Mn 54	Zn 65	Co 60	Mn 54 (36.4)	Co 60	Mn 54	Zn 65	Co 60	Eu152 (44.2)	Co 60	Co 60	Zn 65	Co 60
	Eu152	Mn 54	Co 60	Mn 54		Na 22	Mn 54	Co 60	Mn 54		Co 60				
	(13.4)					(25.8)					(34.6)				
最重要核種	VIn 54					EU152					SC 46				
和主女1次1主	$(\boldsymbol{r},\boldsymbol{r})$					(12.7)					(0.5)				
0,1,10						(11.5)					(5.8)				
						Sc 46					(0.0)				
						(7.7)									
以上合計	(86.8)					(94.2)					(91.0)				
	Sc 46	Co 58		Sc 46		Cs134	Co 58		Sc 46		Eu154		Mn 54		Ni 63
	(5.5)					(2.1)	0. 57				(4.2)				
						Zn 65	C0 57				Zn 65				
昰臿亜核秝	(2.0)					(1.4) Eu154					(1.9) Н 3				
取呈安101至の1/100	(1.9)					(12)					(1 1)				
	Zn 65					()					Ta182				
	(1.1)										(0.7)				
	Eu154										Mn 54				
N A =	(1.1)					(00 7)					(0.6)				
以上合計	(99.0)					(98.7)					(99.4)				
	H 3	Co 57	Fe 59	Co 60	Ni 63	H 3	Zn 65	Fe 59	Co 60	Ni 63	Te123m	Mn 54	Fe 59	Mn 54	
	To122	2n 65	CO 58	нз		1a182			H J No 22		Ca 45	ZN 65	EU152		
最重要核種	161230	re 59	211 05 Co 57			Te123m	re 59	Zn 65	Fe 50		Na 22		ZII 03 Fe 55		
の1/1000			Eu152			Ca 45		Fe 55	16.09		110 22		1600		
			Fe 55			Fe 55		Eu152							

:測定で検出された核種

金属の材質: ステンレス鋼; SUS304、炭素鋼; SS400、アルミ; A6063、銅; C1100

)内はD/Cの合計に対する割合 単位%

相対的に重要となる核種は、

、 核種を測定する事で、確認ができることが推察される。

参-4